
 

 

 © 2023 Jesus Morales Rivas, Jose Juan Peña Gil and J. Garcia Ravelo. This open-access article is distributed under a 

Creative Commons Attribution (CC-BY) 4.0 license. 
 

Journal of Mathematics and Statistics 

 
Original Research Paper 

q-Deformed Statistics from Position-Dependent Mass 

Schrödinger Equation  
 

1Jesus Morales Rivas, 1Jose Juan Peña Gil and 2J. García Ravelo  

 
1Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azc, Sn Pablo, 420, 02128, CdMx, México 
2Instituto Politécnico Nacional, ESFM-Sección de Graduados, Unidad Zacatenco, CdMx, México 

 
Article history 

Received: 15-03-2023  

Revised: 12-06-2023 

Accepted: 07-07-2023 

 

Corresponding Author:  

Jesus Morales Rivas 

Departamento de Ciencias 

Básicas, Universidad 

Autónoma Metropolitana-Azc, 

Sn Pablo, 420, 02128, CdMx, 

México 

Email: jmr@azc.uam.mx 

Abstract: An algebraic approach is used to obtain the canonical form of 

the position-dependent mass Schrödinger equation from where a couple of 

canonical quantum variables, the q-deformed operators for the position xq, 

and the hermitian linear momentum operator pq are derived. In this q-

deformed coordinate space, the commutator remains invariant namely

[ , ]q qx p i= . By taking advantage of these q-deformed variables, one gets 

to a q-deformed exponential function expq(x) as well as its corresponding 

q-deformed logarithm function lnq(x). From these q-deformed 

mathematical relations and from the fact that thermodynamic properties 

such as the internal energy U, entropy S, free energy F, heat capacity C, 

and others are related to the partition function Z and ln(Z), it is proposed 

their generalizations in terms of the q-deformed exponential and q-deformed 

logarithmic functions. As a result, the structure of Legendre 

transformations between these statistical properties remains invariant. The 

usefulness of the proposal is exemplified by considering two specific 

position-dependent mass distributions. In the same way, other possibilities 

could be used to generalize the statistical properties straightforwardly. 

 

Keywords: Thermodynamic Properties, Deformed Exponential Function, 

Position-Dependent Mass 

 

Introduction  

Thermodynamic systems have been studied in the 

context of extensive and non-extensive properties through 

entropy or rather the mathematical properties of 

exponential and logarithmic functions with which the 

entropy is directly defined (Nivanen et al., 2003; Wang and 

Le Méhauté, 2002; Sargolzaeipor et al., 2018). Entropy is by 

construction, nonnegative, concave, and extensive function 

where the concept of extensive function in statistical 

mechanics refers to the fact that if A and B are two 

independent systems, then ( ) ( ) ( )ij i jp A B p A p B+ = , such that 

( ) ( ) ( )S A B S A S B+ = +  (Wang et al., 2002). This mathematical 

property can be achieved with the standard logarithm and 

exponential functions, namely ( ) ( ) ( )ln AB ln A ln B= +  and

( ) ( )exp A B exp A exp(B)+ = . Unlike the extensive systems, the 

non-extensive ones obey the relationship of the type

 from which, due to the 

factor ( ) ( ) ( )Q q S A S B  we can identify a kind of pseudo-

additivity that would be derived from a q-deformed 

exponential function involved in what has been called q-

deformed algebra (Abe, 2001). In general, we would say 

that the q-algebras allow us to introduce the q-calculus in 

such a way that in the new coordinate space, we can solve 

the equation that describes the original problem or identify 

physical properties that from primitive space we could not 

solve. Specifically, the formalism of q-deformed algebra 

lies in the generalization of the standard exponential and 

logarithmic functions. From this generalization, it is 

possible to introduce a kind of q-deformed algebraic 

operations such as q-addition, q-subtraction, and q-product 

(Kaniadakis, 2001; 2002; 2005) as well as a q-deformed 

differential operator (q-calculus) generating a mathematical 

structure supported by a well-defined Abelian field 

(Scarfone, 2015). In this regard, the generalization of the 

statistics mechanics has been already demonstrated 

(Tsallis, 1988) based on the q-exponential function, 

preserving the main features of the ordinary Boltzmann-

Gibbs statistical mechanics. Nowadays, several papers 

have been written on the foundations, the theoretical 

consistency, and the potential applications of the q-

deformed exponential functions in statistical mechanics 

(Silva, 2006; Kim et al., 2019). Also, other specific 

applications have been considered including quantum 
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entanglement (Ourabah et al., 2015), plasma physics 

(Lourek and Tribeche, 2016), genomics (Souza et al., 

2014), and for predicting COVID-19 peaks (Tsallis and 

Tirnakli, 2020). Consequently, due to their multiple 

applications, the q-deformed exponential function has also 

been proposed in the treatment of the Position-Dependent 

MASS Schrödinger Equation (PDMSE), as an introduction 

to the concept of q-deformed quantum mechanics. 

Specifically, it has been related to a change in the linear 

momentum operator (Borges, 2004; Curado and Tsallis, 

1991) which implies the existence of a relationship between 

the statistical mechanics and the q-deformed quantum 

mechanics. Indeed, it is well known that the displacement 

operator is directly related to the linear momentum operator 

through the exponential function (Costa Filho et al., 2011). 

For that, the linear momentum operator would be 

generalized through the q-deformed exponential function 

under the formalism of the q-algebras (da Costa et al., 

2020). So, the q-deformed exponential function is related 

not only to the PDMSE for solving quantum interactions 

but also to the so-called q-statistics in the generalization 

of the additive property of the Boltzmann Gibbs (BG) 

entropy (Gomez and Borges, 2021). With this purpose, in 

the following, we begin by considering the q-deformed 

linear momentum operator in such a way that the 

canonical form of the position-dependent mass 

Schrödinger equation can be achieved. After that, it is 

presented the q-deformed quantum dynamic variables that 

are needed to obtain the generalization (q-deformed) of 

the most important thermodynamic properties. In the end, 

the usefulness of the proposed approach is exemplified by 

considering two different hyperbolic forms of position-

dependent mass distributions. 

The q-Deformed Quantum Mechanics  

The q-Deformed Quantum Linear Momentum 

Operator 

Starting with the position-dependent mass 

Schrödinger equation (Von Roos, 1983): 

 

αβ
K ψ+V(x)ψ(u)= Eψ  (1) 

 

where, the operator  is the von Ross kinetic energy 

operator given by: 

 

( ) ( ) ( )
 
 
 

2
α β γ γ β αh d d d d

Kαβ= - m (q;x) m q;x m q;x +m (q;x) m (q;x) m q;x
4 dx dx dx dx

 (2) 

 

with, m(q; x) the mass distribution, q is the mass 

parameter and the ambiguity parameters fulfill the 

restriction 1  + + = − . By applying the derivative 

operator on the mass distribution, it can be rewritten as in 

Rego-Monteiro et al. (2016) given: 

( ) ( ) ( )
2 ( ; )

d d
x x E x

dx m q x dx
  

  
− + =  

  

 (3) 

 
where: 
 

 (4) 
 

With the aim of transforming Eq. (3) into its canonical 

form, we factorize the Hamiltonian of Eq. (3) as follows: 
 

 (5) 
 

such that if we use the commutator: 
 

 (6) 

 

 

we have: 
 

 (7)  

 

Thus, we can write: 
 

 (8) 

 

where the commutator has been used: 

 

'

'( ; )
,

2 ( ; ) 4 ( ; ) 2 ( ; )

'( ; )

2 ( ; ) 4 ( ; ) ( ; )

i d i m q x

dxm q x m q x m q x

i m q x

m q x m q x m q x

 
 
  

 
=   

 

  (9)  

 

At this point, it should be noticed that the 

apostrophe refers to a standard derivative with respect 

to the position. Finally, we have the canonical form of 

the Hamiltonian: 
 

 2

0

1
ˆ ( )

2
q effH p u x

m
= +  (10) 

 

where:  
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'

1
ˆ

2( ; ) ( ; )
q

i d i
p

dxM q x M q x

 
= − −  

 
 

 (11) 

 
is the q-deformed position-dependent mass linear 

momentum operator, 
0( ; ) ( ; ) /M q x m q x m=  and ( )effu x  is 

the effective potential: 

 

 (12) 

 

that, after using the potential ( )U x  given in Eq. (4) 

leads to: 

 

 (13) 

 

The particular case of constant mass 0(0; )m x m=  gives 

place to the standard operators: 

 

 (14) 

 

It is worth mentioning that the generalized linear 

momentum operator ˆ
qp given in Eq. (11) is a Hermitian 

operator. In fact, any operator of the form: 

 

ˆ ( ) ( )
d

A ig x if x
dx

= − −   (15) 

 

fulfill the condition: 

 

ˆ ˆ( )* ) * ) *(2 ( ) '( ))A dx A dx i f x g x dx     = + −    (16)  

 

Here, ˆˆ
qp A=  on condition to have ( )

( ; )
g x

M q x
=

'

1
( )

2 ( ; )
f x

M q x

 
=  

 
 

. In such case the second term of Eq. 

(16) banishes and we have: 
 

*

ˆ ˆ( ) ) * )q qp dx p dx   =    (17) 

 

showing that the operator ˆ
qp  is a hermitian operator 

and consequently the Hamiltonian operator Ĥ  given in 

Eq. (10) is also Hermitian, which is a sufficient 

condition to deal with real eigenvalues. Additionally, 

the operator ˆ
qp could not be self-adjoint if the

† 'ˆ ˆ( , ) ( , )q qp D p D  inequality holds. In that case, we 

would be dealing with a self-adjoint extension for the 

operator ˆ( , )qp D  (Gadella et al., 2007). On the other 

hand, if the domains D and D' match then the ˆ
qp  

operator could be self-adjoint. This latter property is 

also determined by the mass distribution ( ; ).M q x  

Canonical Transformation 

To solve the canonical Schrödinger equation 

H E = with H given in Eq. (10) for some interaction 

potential V and mass distribution
0( ; ) ( ; )m q x m M q x= , we 

propose the point canonical transformation: 
 

( ; )qx M q x dx=    (18)  

 
leading to: 

 

 (19) 
 

Thus, by applying the similarity transformation: 
 

 ( )
1/4

( ; ) ( )qm q x x =  (20)  

 
we have: 
 

2

2

02 q

d
U E

m dx


 − + =  (21) 

 

where: 
 

( )

( ) ( )

2 ''

0

2
'

0

1
( ; )

2 2

3
4 1 ( ; )

2 4

U V ln m q x
m

ln m q x
m



   

 
= + + 

 

  − + + + +   
  

 (22) 

 

The Schrödinger equation given above has been 

solved for different mass distributions under different 

interaction potentials, so in this study, we will only focus 

on using the transformation derived in the previous 

formalism to extend its applications in the q-deformed 

thermodynamic properties. 

Generalization (q-Deformed) of Thermodynamic 

Properties  

The q-Deformed Quantum Dynamic Variables 

The generalized quantum dynamic variables, namely 

the q-deformed linear momentum operator pq and the 
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canonical transformation xq given in Eqs. (11) and (18) 

respectively, preserve invariant the quantum commutation 

relationship, namely ,q qx p i  =   Explicitly: 

 

 (23) 
 

Furthermore, through these new quantum dynamic 

variables, we can introduce the generalized (q-deformed) 

exponential function:  
 

( ) ( )q qexp x exp x=  (24) 

 

such that: 

 

0
lim ( ) ( )q
q

exp x exp x
→

=  (25) 

 

being the standard exponential function.  

 

In addition, if the transformation given in Eq. (18) has 

an inverse, the generalized (q-deformed) logarithmic 

function will be: 

 

( )1( ) ( )q qln x x ln x−=  (26)  

 

Generalized (q-Deformed) Statistic Properties 

It is well known that statistical properties such as the 

internal energy U, entropy S, free energy F, and heat 

capacity C are defined through the partition function Z(T) 

and its logarithm ln(Z) (Peña et al., 2016). It is defined as: 

 

 ( )/ii
Z exp kT


= −  (27) 

 

where,   is the total number of allowed states of the 

system with probabilities given by the Boltzmann 

distribution (Tsallis, 2009): 

 

 ( )
1

/i ip exp kT
Z

= −   (28)  

 

on condition that, 1ii
p


=  

 

Thus, the internal energy U comes from: 

 

i i

i

U p lnZ


 
=  = −


  (29) 

At this point, it is worth mentioning that the q-deformed 

exponential function expq (x) given in Eq. (24) and the q-

deformed logarithm function of Eq. (26) can be used to 

introduce a generalized (q-deformed) partition function Zq 

and consequently the internal energy Uq. Namely: 
 

( )q q i

i

Z exp 


= −   (30) 

 

and: 
 

( )q qU ln Z



= −


 (31)  

 

with
1

kT
 = . Thence, due to the fact that the partition 

function Z and the internal energy U are involved with 

other statistic potentials (Peña et al., 2016) through the so-

called Legendre transformations, namely the Entropy

( )S kln Z k U= + , the Helmholtz free energy

1
( )F ln Z


= − , and the heat capacity 2 U

C k



= −


, by 

preserving the structure of the Legendre transformations, 

it is possible to get their corresponding generalized 

expressions as follow: ( )q q q qS k ln Z k U= +

1
( )q q qF ln Z


= − and 2 q

q

dU
C k

d



= − and. The next section 

will give some explicit examples. 

Application to Thermodynamic Properties  

This section is devoted to showing the usefulness of 

the proposal by considering two different position-

dependent mass distributions of hyperbolic type. 

Mass Distribution m(q; x)=m0 cosh2(qx)  

In this case M (q; x) = cosh2 (qx) such that, from 

Eqs. (11) and (18) The q-deformed quantum dynamic 

variables are: 
 

 ˆ ( ) ( )
2

q

d q
p i sech qx i sech qx tanh(qx)

dx
= − +  (32)  

 
and: 
 

 
1

qx sinh(qx)
q

=   (33) 

  
Straightforwardly, for this case, the quantum 

commutation relation between xq and pq remains unchanged.  

Furthermore, in accordance with Eq. (24), the 

generalized q-deformed exponential function is: 
 

 (34)  
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whose partner inverse function is defined as the 

generalized q-deformed logarithmic relationship:  
 

( )( )
1

( ) -1

qln x sinh qln
q

x=  (35)  

 
So, by using the identity: 

 

 ( )1 2( ) 1sinh x ln x x− = + +  (36)  

 
one gets: 

  
1

2 2( ) ( ) 1 ( )
q

qln x ln qln x q ln x = + +
 

 (37)  

 
Also, it is easily observed that:  

 

 (38) 

 

Consequently, from the Eqs. (30) and (34) we can 

write the q-deformed partition function Zq (T) as: 

 

 
( )i

q i

sinh q
Z exp

q

  − 
=  

 
  (39) 

 
Hence, the generalized (q-deformed) internal energy 

comes from the Eq. (31) as: 

 

 (40) 

 

Also, in view of Eq. (38), one has: 

 

 
0

lim q
q

Z Z
→

=  (41) 

 

and: 
 

0
lim ( )q q
q

U ln Z U
→


= − =


 (42) 

 
Finally, by following the structure of the Legendre 

transformation among some thermodynamic functions, 

the generalization of the internal energy given in Eq. (31) 

and its related functions are rewritten as follows: 
 

( )q q q qS k ln Z k U= −   (43) 

 
where: 
 

 (44) 

and: 
 

( )

2 2

12

2

2 2 2

( )

( ) 1 ( .

2

)

q

q q q

q

q q

U
C k k ln Z

k ln qln Z q ln Z

 



 




  
 

  


= − = − − =



+ +




 (45) 

 
As before, when the q parameter tends to zero, all the 

above-generalized statistic properties reduce to their 

corresponding standard ones. 

Mass Distribution m(q; x)=m0 cosh4(qx)  

 In this new situation, from Eqs. (11) and (18) the q-

deformed quantum variables are: 

 

2ˆ ( ) ( ) ( )q

d
p i cosh qx i qcosh qx sinh qx

dx
= − −  (46)  

 

and: 
 

1
( )qx tanh qx

q
=  (47)  

 

fulfilling the commutation relationship [xq, pq] = ih  

 

Likewise, from Eq. (24), the generalized q-deformed 

exponential function results in:  

 

1
( ) ( )qexp x exp tanh qx

q

 
=  

 
 (48)  

 
and the corresponding inverse function is: 

 

11
( ) ( ( ))qln x tanh qln x

q

−=  (49)  

 

which, after using the identity:  
 

1 1 1
( )

2 1

x
tanh x ln

x

− + 
=  

− 
  (50) 

 we have: 
 

 (51)  
 

Also, the q⟶0 limit leads to: 
 

0
lim ( ) ( )q
q

exp x exp x
→

=  (52) 

 
and: 
 

0
lim ( ) ( )q
q

ln x ln x
→

=  (53) 
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Eq. (30) together with Eq. (48) leads to the q-deformed 

partition function: 

 

 (54) 

 

Hence, the generalized (q-deformed) internal energy 

comes from the Eq. (31) as: 

 
1

21 ( )

1 ( )

q
q

q

q

qln Z
U ln

qln Z

 +
= −  

  − 

 (55)  

 

By virtue of the result given in Eqs. (52-53) we have: 
 

0
lim q
q

Z Z
→

=  (56) 

 

as well as: 

 

0
lim q
q

U U
→

=  (57) 

 

Finally, the Legendre transformations of the 

thermodynamic functions are generalized as follows: 

 

( )q q q qS k ln z k U= −  (58) 

 

where: 

 

 (59) 

 

 (60) 

 

and: 

 (61) 

 

As expected, from expressions given in Eqs. (56-57) 

the limit case 0q →  leads to the standard statistic 

potentials, namely:  

 

0 0 0
lim , lim limq q q
q q q

S S F F and C C
→ → →

= = =  (62) 

 

Recovering the standard expressions for the statistic 

properties entropy S, Helmholtz free energy F and the heat 

capacity C. 

Materials and Methods 

This study is theoretical research on the field of 

Quantum mechanics. Specifically, on the q-deformed 

form for which the study begins with the search of the q-

deformed Quantum linear momentum operator. From 

there, the q-deformed exponential function 

 as well as the corresponding q-deformed 

logarithm function  which come from 

the canonical form of the PDM Schrödinger equation, 

were used to generalize the thermodynamic potentials 

defined through their corresponding standard functions. 

With these elements, the hyperbolic mass distributions 

such as and  

were used for exemplifying the proposal. 

Results and Discussion 

From the hyperbolic mass distribution

, the q-exponential function:  

 

 
 

and the q-logarithm function: 

 

 
 

were obtained. 

 

With these results, the corresponding generalized 

thermodynamic properties become: 

 

 
 

 
 

 
 

and:  
 

 
 

Likewise, when we use the mass distribution 

, the q-exponential function and the 

q-logarithm function are respectively given by: 
 

 
 
and: 
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Consequently, the corresponding generalized 

thermodynamic properties: 
 

 
 

 
 
and: 
 

 
 
were derived. 

Conclusion 

Based on the q-deformed quantum variables xq and pq 

deduced from a purely algebraic approach, the purpose of 

this study has been to propose a generalization of the 

partition function and the internal energy through a q-

deformed exponential function and its partner q-deformed 

logarithmic function. In addition, taking advantage of the 

above approach, some thermodynamic properties lie in 

the partition function and the internal energy, which have 

also been generalized. These generalizations are 

straightforward since such potentials are given in terms of 

the Legendre relations, which remain invariant under this 

treatment. Namely, from the q-deformed generalized 

partition unction ( )q q ii
Z exp 


= −  all the other related 

thermodynamic functions are directly generalized. In 

order to show the usefulness of our proposal, we have 

considered two hyperbolic position-dependent mass 

distributions although the method is general and can be 

adapted to other situations.  
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