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Abstract: Problem statement: Hotelling’s T2 statistic has been well documented in the existing 
literature and exact as well as asymptotic results have been obtained. In the present article, we focus on 
an important particular case of T2 and we note that, there is no clear way to show, how univariate 
results, used in the theory of Student’s t statistic, could be used to derive corresponding multivariate 
ones, for T2 . Therefore, our goal is to find an alternative method, which would be more useful than the 
usual one, in order to generalize directly univariate theory. Approach: At first, we used some matrix 
tools in order to obtain an equivalent algebraic form for T2 and, then, we applied some univariate 
results concerning distributions which arise from the normal distribution. Results: We found an 
algebraic representation of T2, which can be conceived as the natural extension of some results 
appearing in the literature and, we used our findings to show how standard univariate techniques can 
be applied in order to derive the exact and limiting distributions of T2. Conclusion: Using the 
proposed representation of T2 gives a better insight on the generalization of univariate results to 
multivariate analyses and indicates, at the same time, an alternative way to prove typical multivariate 
results. Furthermore, it allows for usual theoretical calculations to simplify.  
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INTRODUCTION 
 
 The T2statistic was derived by Hotelling (1931), as 
a multivariate generalization of Student’s t and has been 
very well documented over the years. Hsu (1938) 
derived the distribution of T2 in the case where the null 
hypothesis is not true. Bowker (1960) derived a 
representation of T2 as the ratio of two independent x2 
variables, the numerator being non central. This has, 
also, been described in details in Anderson (1984). 
 In the present study, we focus on a very important 
special case, which is as follows (see also Anderson 
(1984), Chapter 5). Let us first take a random vector 
sample X1,…, Xr, of dimension p, which is normally 
distributed and consider 2 -1

rT  r(X ) M (X )Τ= − μ − μ , 
where X  is the mean vector and Mr the sample 
covariance matrix. It is well known that T2 is used for 
testing hypotheses about the population mean vector μ. 
It is also interesting to note that, under the null 
hypothesis that μ = μ0, it has been shown that T2 = T2

0 
is a function of the likelihood ratio test λ0, since 

2 2/ r
0 0T (r 1)( 1)−= − λ − . (Anderson (1984), U9). 

 We need to mention, at this point, the great use of 
the aforementioned statistic in diverse practical 
applications arising from many different fields. For 
instance, a recent article concerning marketing issues 
was published by Agarwall and Dey (2010) in order to 

assess the level of air travellers’ satisfaction among 
Indian domestic airlines.  Another recent example arises 
from the field of Insurance, where Momani et al. (2010) 
use simple and multiple regression techniques in order 
to examine the effect of different factors on the capital 
structure of insurance sector companies listed in the 
Amman stock market. Finally, a third indicative 
example concerns the use of a simple version of T2, in 
an analysis of data from meteorological stations in 
order to examine climate change in Jordan (Hamdi et 
al., 2009). 
 An important result is given by Corollary 5.2.1. of 
Anderson (1984), which gives the distribution of T2 and 
which also allows for the case where the null 
hypothesis is not true. We now state Corollary 5.2.1., 
which we call Theorem 1, using our notation. 
 
Theorem 1: Let X1,…, Xr be a sample from N(μ,Σ) and 
let 2 -1

0 r 0T  r(X ) M (X )Τ= − μ − μ . The distribution of 
2T r p[ ][ ]

r 1 p
−

−
 is non central F with p and r-p degrees of 

freedom and noncentrality parameter 
1

0 0r( ) ( )Τ −μ − μ Σ μ − μ . If μ = μ0, then the F distribution is 
central.  
 In the present study, we need to extend the 
algebraic calculations appearing in Anderson (1984), 
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U12 and to show that, in the multivariate case, that is 
the case where p>1, T2 can be put into a special 
algebraic form (representation), as a direct 
generalization of the univariate case p = 1. Under this 
new representation, we will revisit Theorem 1, for the 
multivariate case and we shall examine how univariate 
results can be used to infer about T2. We shall focus on 
this methodology, since, according to our knowledge, it 
does not appear anywhere in the existing literature.  
 Furthermore, we consider the case where r→∞, 
using, once again, our algebraic representation for T2. 
The corresponding asymptotic version of Theorem 1 is 
given by Theorem 5.2.3., of Anderson (1984), which 
we call Theorem 2. We now state briefly Theorem 2, 
using our notation see also (Polymenis, 2008). 
 
Theorem 2: Let {Xi}, i = 1, 2,…, be a sequence of 
independently identically distributed random vectors 
with mean vector μ and covariance matrix Σ; then, the 
limiting distribution of T2, as r→∞, is the χ2(p) 
distribution if μ = μ0. 
 In this case, we need to derive the limiting 
distribution of T2 and to show, in the same spirit as 
before, how results for p=1 can be directly used to 
obtain results for p>1. Thus, we revisit Theorem 2, 
using our method. We, again, focus on using univariate 
results to obtain corresponding multivariate ones.  
 

MATERIALS AND METHODS 
 
A specific representation of T2: We use here first, an 
algebraic approach similar to the one used by Anderson 
(1984), U15 in order to derive the distribution of T2, at 
first under the null hypothesis. For reasons of 
simplicity, we first centre the Xi vectors, so that the null 
hypothesis becomes μ = μ0 = 0. Furthermore, we 
choose the covariance matrix of rX  to be l, the 
Identity matrix, since this simplification will not affect 
the distribution of T2 (see Anderson (1984)). The 
covariance matrix of Xi can, consequently, be chosen to 
be l, since it is equal to the covariance matrix of rX . 
We, then, proceed by considering an orthogonal (pxp) 
matrix Q = (qij) such that: 
 

Xlq  for l 1,...,p1l TX X
= =  

 
 We now give the main result concerning the new 
representation of T2. 
 
Theorem 3: Hotelling’s 2 T -1

rT rX M X=  can be written 
as: 

T
2

r p 1
(1) 2
i

i 1

rX X T 1 (V )
r 1

− +

=

=
∑

−

 

 
where, (1)

iV  is the first element of the column vector 
V Q(X X).i i= −  
 
Proof of theorem 3: Let us set: 
 

T
rU rQX and   B (r 1)QM Q= = −  

 
Where: 
 

r T
r i i

i 1

1M (X X)(X X)
(r 1) =

= − −∑
−

 

 
 Then we have: 
 

T

T

T T
T

T

p
1

1 11 1 1
i 1

p
p

Xu r q X = r ( X +...+
X X

X rX XX )= = rX X  
T X XX X

=
= ∑

 

 
and, for j ≠ 1, we have:  
 

p p
T

j jl l jl ll
l=1 l=1

p
T

jl ll
l=1

u = r q X = r q q X X

rX X  q q =0

∑ ∑

= ∑
 

 
since Q is orthogonal. 
 Thus, we have that: 
 

2
2 T -1 T -1 T -1

r r
r TT  rX M X  and  U B U X M X

r 1 r 1
= = =

− −
 

 
where, U = (u1, 0,…,0)T and: 
 

11 12 1p

21 22 2p
-1

p1 p2 pp

b b ... b
b b ... b

B
... ... ... ...
b b ... b

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

  
Thus: 
  

2
2 11
1

T u b
r 1

=
−

 

 
 Set B to be the inverse matrix of B-1, write B = (bij) 
and partition B as: 
 

T
11 (1)

(1) 22

b (b )
 B

b B
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
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where, b(1) = (b12,…, b1p)T and: 
  

22 2p

32 3p
22

p2 pp

b ... ... b
b ... ... b

B  
... ... ... ...

b ... ... b

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 We partition B−1 in the same way: 
 

11 (1) T
-1

(1) 22

b (b )
B

b B
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 From Theorem 8.2.1, result 1(d), of Graybill 
(1969), we obtain: 
 

T 1 11 1
11 (1) 22 (1)b (b ) B b (b )− −− =  

 
 This is a result from the theory of partitioned 
matrices. 
 If we write: 
 

T 1
11.2,...,p 11 (1) 22 (1)11

1b b (b ) B b
b

−= = −  

 
 Our statistic becomes: 
 

T
2

11.2,...,p

rX XT b
(r 1)

=

−

 

 
 On the other hand: 
 

rT T
r i i

i 1
B (r 1)QM Q (Q(X X))(Q(X X))

=
= − = − −∑  

 
 Setting then i iV Q(X X)= − , we obtain: 
 

r T
i i

i 1
B V (V )

=
= ∑  

 
 Now, partition Xi and Vi into two subvectors with 1 
and (p-1) components, respectively, so that: 
 

(1) (2) T T
i i iX (X ,(X ) )  =  

 
and: 
 

i i i
(1) (2) T TV (V ,(V ) )=  

 
with: 

p-1(1) (2) (2) (2) T
i i i,1 i,p 1

p-1(1) (2) (2) (2) T
i i i,1 i,p 1

X R ,   X (X ,...,X ) R  ,    

  V R , V (V ,...,V ) R

−

−

∈ = ∈

∈ = ∈   
 

(1) 2 (1) 2
11 1 rSince b R  and ((V ) ... (V ) ) R∈ + + ∈

r
T ( 2 ) ( 2 ) T T ( 2 ( 2 ) T T

2 2 i i

i 1

E (E ) FV (V ) F F( V (V ) )F
=

= = ∑  
 
 We have: 
 

r (1) 2
11 i

i 1
b (V )

=
= ∑  

 
 We now compute the term T 1

(1) 22 (1)(b ) B b−  
 For that purpose, setting: 
  

T 1
(1) 22 22(b ) B G and B H− = =  

 
We have: 
 
 T 1 T 1 1 T

(1) 22 (1) (1) 22 22 22 (1)(b ) B b ((b ) B )(B )(B b ) GHG− − −= =  
 
(since B22 is symmetric). 
 (Not that H is a ((p-1) × (p-1)) matrix and G a row 
vector of dimension p-1). 
We have: 
 

r r(1) (2) T 1 (2) (2) T
i i i i

i 1 i 1
G V (V ) H   and    H V (V )−

= =
= =∑ ∑  

 
 Defining r

(1) (1) (1)
1V (V ,...,V )=  and: 

 
(2) (2)

1,1 r,1
(2)

(2) (2)
1,p 1 r,p 1

V ... V
V ... ... ...

V ... V− −

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 We then obtain T (1) (2) T 1 (2) (1) TGHG V (V ) H V (V ) .−=  
 Now, using Theorem A.4.1., of Anderson (1984), 
we can find a non-singular matrix F such that FHFT = 
l(p-1,p-1), H being of full rank and, thus: 
 

T 1 1 1
(p 1,p 1)

(2) (2) 1
2 2

(F ) H F I    

Let  E FV   so that   V F E

− − −
− −

−

=

= =
 

 
We have: 
 

(p 1,p 1)

rT (2) (2) T T (2) (2) T
2 2 i i

i 1
T T

E (E ) FV (V ) F F( V (V ) )

F FHF I − −

=
= = ∑

= =
 

 
where, l(p-1,p-1) denotes the ((p-1) × (p-1)) identity matrix. 
 Thus, the p-1 rows of E2 are orthogonal and their 
norm is equal to 1 (not that E2 is a((p-1) × r) matrix.) 
Using lemma A.4.2, of Anderson (1984), we can find a 

((r-p+1) × r) matrix E1 such that 1

2

E
E

E
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and E is an 

(r×r) orthogonal matrix.  
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 Let us now set: 
 

r

i i,
1

K e Vβ β
β=

= ∑  

where the ei,β’s are the entries of the matrix E and 
(1) (2) T T (1) (2) p 1

i i i i iK (K ,(K ) ) ,  with K R,  and K R .−= ∈ ∈  
 
 Then: 
 

r p 1,r
(1) (1) (1) (1) (1) (1)
1 1,1 1 1,r r r r p 1,1 1 rK e V ... e V ,...,K e V ... e V− +− += + + = + +

 
 So that, letting: 
 

(1) (1) (1) (1) T (1) T
1 rK (K ,...,K ),  we obtain  (K ) E(V )= =  

 
 Thus, K(1) = V(1)ET, which is equivalent to V(1) = 
K(1)E since E is orthogonal and GHGT = K(1) E(E2)T (F-

1)T H-1 F-1 ET (K(1))T. 
 However, on the one hand, (F-1)TH-1F-1 = I(p-1,p-1) 
and , on the other hand, E1(E2)T is the ((r-p+1) × (p-1)) 
matrix [0] because E is orthogonal and E2(E2)T = I(p-1,p-

1). For simplicity reasons, we write I(p-1,p-1) = I. Thus, we 
obtain: 
 

T (1) T 1 T 1 1 T (1) T

2 2
GHG K E(E ) (F ) H F E E (K )− − −=  
 
Where: 
 

(1) T T (1) (1)
r p 2 rK ([0] , I) (K ,...,K )− +=  

 
and: 
 

(1) (1) (1)T T T
r p 2 r([0] , I)(K ) = (K ,...,K )− +   

 
 We obtain finally: 
 

2 2 2
i

i r p 2

T (1) (1) (1) (1) T
r p 2 r r p 2 r

r(1) (1) (1)
r p 2 r

GHG (K ,...,K )(K ,...,K )

(K ) ... (K ) (K )
= − +

− + − +

− +

=

= + + = ∑
 

  
 On the other hand, since i i

r

1
K e Vβ β

β=
= ∑ , using 

Lemma 3.3.1., of Anderson (1984), we have: 
 

(1) (1)
i i

r r2 2

i 1 i 1
(V ) (K )

= =
=∑ ∑   

 
 Thus, we obtain: 
 

T 1
11.2,...,p 11 (1) 22 (1)

r p 1r r(1) 2 (1) 2 (1) 2
i i i

i 1 i r p 2 i 1

b b (b ) B b

(K ) (K ) (K )

−

− +

= = − − =

= −

= − =∑ ∑ ∑
 

and the T2 statistic takes the from: 
 

2

2

T

r p 1
(1)
i

i 1

rX XT 1 (K )
r 1

− +

=

=
∑

−

 

 
 Since, as aforementioned: 
 

2 2r r(1) (1)
i i

i 1 i 1
(V ) (K )

= =
=∑ ∑   

 
it results that: 
 
 

r p 1 r p 1
(1) 2 (1) 2
i i

i 1 i 1
(V ) (K )

− + − +

= =
=∑ ∑   

 
for all r>p-1 and, consequently: 
 

 
T

2
r p 1

(1) 2
i

i 1

rX XT 1 (V )
r 1

− +

=

=
∑

−

 

 
 Hence, Theorem 3 obtains. 
 
Properties of the numerator and the denominator of 
T2: We, first, present three useful preliminary lemmas.  
 

Lemma 1: Under the null hypothesis, 
r p 1

(1) 2
i

i 1

1 (V )
r 1

− +

=
∑

−
 is 

χ2(r-p) distributed. 
 
Proof of lemma 1: Since i iV Q(X X)= − , we obtain 
that: 
 
 11 1

(1) (1) (2) (p)
i i 12 i 2 1p i pV q (X X ) q (X X ) ... q (X X )= − + − + + −  

 
with: 
 

( j)

i j

1
(X X ) N(0,1 )

r
− −∼  

 
and: 
 

T T
1 p0 (0,...,0) ,X (X ,...,X )= =�  

 
Then: 
 

( j)
i j

( j)
j i

i 1

1(X X ) N(0,1 ),   i 1,..., r p 1 and  j 1,...,p
r

r1(with X X )
r =

− − ∀ = − + =

= ∑

∼
 

 
 This is a well-known univariate result, applied to 

( j)
iX . 
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 On the other hand, since q11, q12,…, q1p are the 
elements of the first row of the (p×p) matrix Q, which 
is orthogonal, it result that:  
 

p
2 (1)
1j i

j 1
q 1, so that E(V ) 0

=
= =∑  

 
and: 
 

p
(1) 2
i 1j

j 1

1 1Var(V ) (1 ) q 1
r r=

= − = −∑  

 
Thus: 
 

T 2 2 2

1 p
rX X rX ... rX (p)= + + χ∼  
 
which is, as aforementioned, the distribution of 

( j)
i j(X X )−  and, so, the distribution of 

r p 1
(1) 2
i

i 1
(V )

− +

=
∑  is the 

same as that of 
r p 1

( j) 2
i j

i 1
(X X )

− +

=
−∑ . Then, using theorem 

with proof (section 4.10, Grimmett and Stirzaker 
(2001)), applied to the independent, N(0,1) random 
variables ( j)

iX , we obtain that 
n ( j) 2 2

i j
i 1

(X X )  is  χ (n 1)
=

− −∑  

distributed. Finally, letting n = r – p+1, we obtain that 
r p 1

( j) 2
i j

i 1
(X X )

− +

=
−∑  is χ2 (r-p) distributed. 

 We conclude that 
r p 1

(1) 2
i

i 1
(V )

− +

=
∑  is also χ2 (r-p) 

distributed and independently of Q. N this is in 
accordance with a remark in the proof of Theorem 
5.2.2, of Anderson (1984), stating that “since the 
conditional distribution of b11.2,…p does not depend on 
Q, it is unconditionally distributed as x2”. 
 
Lemma 2: Under the null hypothesis, TrX X  is x2(p) 
distributed. 
 
Proof of Lemma 2: Since we know that: 
 

1

p

X 0
. .

X .  , with E(X) =0 .
. .

X 0

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

�  

 
and: 
 

 

1 / r 0 0 ... 0
0 1 / r 0 ... 0

Var(X)
... ... ... ... ...
0 ... ... 0 1 / r

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

it results that 2 2rX (1)χ∼ , so that all entries of the vector 
rX  are, independently, N(0,1) distributed and, as a 

result, p
T 2 2 2

1rX X rX ... rX (p)= + + χ∼ . Note that this is a 
direct generalization of the univariate case, p = 1, where 

1X N(0, )
r

∼  and, thus, 2 2rX (1)χ∼ . 

 

Lemma 3: TrX X  and 
r p 1

(1) 2
i

i 1

1 (V )
r 1

− +

=
∑

−
 are independently 

distributed random variables.  
 
Proof of lemma 3: We first note that this lemma is 
equivalent to the application of Lemma 1 to expression 
(3.3), mentioned in Bowker (1960). We will now 
elaborate on that, using the result of Theorem 3. 
Let us call V the vector: 
 

(1)
1
(1)
2

(1)
r p 1

V
V

.

.

.
V − +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

2

11 1 1 12 1 2 1p 1 p

11 1 12 2 2 1p 2 p

11 r p 1 1 12 2 1p p

(1) (2) (p)

(1) (2) (p)

(1) (2) (p)
r p 1 r p 1

q (X X ) q (X X ) ... q (X X )

q (X X ) q (X X ) ... q (X X )

.

.

q (X X ) q (X X ) ... q (X X )− + − + − +

⎛ ⎞− + − + + −⎜ ⎟
⎜ ⎟
⎜ ⎟

− + − + + −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− + − + + −⎜ ⎟
⎝ ⎠

 

 

 The vector X
V
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is normally distributed. Indeed, 

every linear combination of its components is a linear 
combination of the ( j)

iX  's , which are independently 
distributed normal variables.  
 Thus, independency between X and V amounts to 
independency between jX  and 

(1)
iV , i 1,..., r p 1  and  j 1,...,p ∀ = − + = . Hence, in order to 

prove Lemma 3, it is sufficient to prove that Cov( jX , 
p

( j)
1j i j

j 1
q (X X )) 0

=
− =∑ , which, in turn, amounts proving 

that Cov( jX , (l)
i l(X X )− )=0, for all j, l = 1,…, p. In the 

case where j ≠ l, E (l)
j i(X X ) 0=  

since (l) ( j)
i kE(X X ) 0,  for all k 1,..., r= =  and, thus, Cov( jX , 
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(l)
i l(X X )− ) = 0. In the case where j = l, 

( j) 2
j i j

1E(X X ) E(X )
r

= = , so that, Cov( jX , ( j)
i j(X X )− )=0, 

as well. The latter case is equivalent to the well known 
univariate result Cov( X , i(X X)− ) = 0, which shows 
independency between numerator and denominator of 
student’s t. (See, also, Grimmett and Stirzaker (2001), 
section 4.10, for a comprehensive analysis of the 
univariate case.) 
 We, now, present a useful lemma, concerning the 
limiting properties of the denominator of T2. 
 

Lemma 4: As r→∞, 
r p 1

(1) 2
i

i 1

1 ( V )
r 1

− +

=
∑

−
→1 in probability. 

 
Proof of Lemma 4: We first prove Lemma 4, for p = 1, 
since we will use its results in the proof of Lemma 4, 
for p>1. In this case, T2 = t2, the denominator of t2 is 

r 2
i

i 1

1 (X X)
r 1 =

−∑
−

 and, we first need to show that, as 

r→∞, 
r 2

i
i 1

1 (X X)
r 1 =

−∑
−

→1 in probability. This, in turn, 

amounts showing that E( 2r

i
i 1

1 (X X)
r 1 =

−∑
−

)→1 and 

Var
r 2

i
i 1

1( (X X) )
r 1 =

−∑
−

→0, as r→∞. 

  Thus, we first calculate E(
r 2

i
i 1

1 (X X)
r 1 =

−∑
−

). We 

know that 2
i iE((X X) ) Var(X X)− = − , since iE(X X)− = 

0. On the other hand, iVar(X X)− = 11
r

− , so that: 

 
r r2

i i
i 1 i 1

1 1E( (X X) ) Var(X X)
r 1 r 1

1 (r 1) 1
r 1

= =
− = −∑ ∑

− −

= − =
−

 

  

 We, then, calculate 
r 2

i2
i=1

1 Var( (X X) )
(r 1)

−∑
−

. In 

order to do that, we first calculate 
r

i
2

2
i 1

1 ( Var(X X) )
(r 1) =

−∑
−

, which we call (1). We show, 

first, that: 
 

2
i

2
i i

2
2

Var(X X) Var(X ) 2Cov(X ,X)
2 2Var(X ) 2
r r

− = − +

= − +
 

 Indeed, since iX N(0,1)∼ , 2
iVar(X ) 2=  and 

Cov
r

i i i i
i 1

1 1 1(X ,X) Cov(X , X ) Var(X ) ,  i 1,..., r
r r r=

= = = ∀ =∑ . 

On the other hand: 
 

2 2
1 r4 4

2 2
1 r i j

i j

r 2
i i j4

i 1 i j

1 1Var(X ) Var[(X ... X ) ] Var
r r

[X ... X 2 X X ]

1 [ Var(X ) 4 Var(X X )]
r

≠

= ≠

= + + =

+ + + ∑

= +∑ ∑

 

  
 This is a consequence of the independency between 
the random variables Xi and Xj, so that 

2
i j kCov(X ,X X ) 0= , for all j ≠ k and 
2 2
i jCov(X ,X ) 0,  i j= ∀ ≠ . Since 

2 2 2 2
i j i j i jVar(X X ) E(X X ) E(X )E(X ) 1= = =  and 2

iVar(X ) 2= , 
it then results that : 
 

2
4 4

4 2

1 4Var(X ) (2r) ((r 1) (r 2) ... 1)
r r

1 r(r 1) 2[2r 4 ]
r 2 r

= + − + − + +

−
= + =

 

 
Thus: 
 

2
i 2

2 2Var(X X) 2
r r

− = − +  

 
Then: 
 

 

r 2
i2

i 1

2 2 2

1(1) ( Var(X X) )
(r 1)

1 2 2 2r 2 2 / r(r(2 ))
(r 1) r r (r 1)

=
= −∑

−
− +

= − + =
− −

  

 
 Hence, (1)→0 as r→∞. 
 We, then, calculate 

2 2
2 k l

k l

2 Cov[(X X) ,(X X) ],
(r 1) ≠

− −∑
−

 which we call (2). 

We have that: 
 

 l

l l

2 2 2
k k

2 2 2
k

Cov[(X X) ,(X X) ] E[(X X)

(X X) ] E[(X X) ]E[(X X) ]

− − = −

− − − −
 

 
 On one hand: 
 

2
k k

1E[(X X) ] Var(X X) 1
r

− = − = −  
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So that: 
 

 2 2 2
k l

1E[(X X) ]E[(X X) ] (1 )
r

− − = −  

 
and on the other hand, we need to find 

2 2
k lE[(X X) (X X) ]− − . Then, simple calculations show 

that:  
 

2 2 2 2 2
2

2
2

k l k l k

3
k l k 3 3

1 r 2E(X X ) 1,  E(X X X) ,  E(X X )= , 
r r

2 3 2r 14 E(X X X )= ,   E(X X ) ,E(X )
r r r

+
= =

+
= =

 

 
So that: 
 

k
2 2

1 2 3

2 14 11E[(X X) (X X) ] 1
r r r

− − = − + −  

 
 It, then, results that: 
 

3

3 3

2 2
k l

k l

2
2

k l

2 2 2
k l

Cov[(X X) ,(X X) ]

2 14 11 1[(1 ) (1 ) ]
r r r r

13 11 r(r 1) 13 11 13 12 11( ) ( )
r r 2 r r 2 r 2r

≠

≠

≠

− − =∑

− + − − − =∑

−
− = − = − +∑

 

 
and, thus: 
 

2 2

2 2 2 2

2 13 12 11(2) ( )
(r 1) 2 r 2r

13 24 11
(r 1) r(r 1) r (r 1)

= − +
−

= − +
− − −

 

 
 Hence, (2)→0 as r→∞. 

 Finally, 
i 1

r 2
i2

1 Var( (X X) )
(r 1) =

−∑
−

 = (1)+(2), which 

tends to 0 as r→∞. This proves Lemma 4, for the case p 
= 1. 
 We now need to generalize that and show how 
univariate results can be used for obtaining 
corresponding multivariate ones. For that, let us 

consider p>1 and 
T

2
r p 1

(1) 2
i

i 1

rX XT 1 (V )
r 1

− +

=

=
∑

−

, where: 

 
 (1) (1) (2) (p)

i 11 i 1 12 i 2 1p i pV q (X X ) q (X X ) ... q (X X )= − + − + + −   
 
 The general proof of Lemma 4, will be an 
immediate consequence of the results found for the case 
p = 1. 

 In order to prove Lemma 4, we need showing that: 
 

 
r p 1

(1) 2
i

i 1

1E( (V ) ) 1, as r
r 1

− +

=
→ →∞∑

−
 

 
and: 
 

r p 1
(1) 2
i

i 1

1Var( (V ) ) 0 as r
r 1

− +

=
→ →∞∑

−
 

 
 We, now, digress to say that 

r 2
i

i 1
(X X)

=
−∑ is the 

univariate version of 
r p 1

(1) 2
i

i 1
(V ) )

− +

=
∑ , in which case, 

11 1jp 1,  q =1 and q = 0 for j 1= ≠  as aforementioned 
Consequently, the limiting values of the expectations of 

r p 1
(1) 2
i

i 1

1 (V )
r 1

− +

=
∑

−
 and 

r 2
i

i 1

1 (X X)
r 1 =

−∑
−

, must be equal and, 

those of the variances of 
r p 1

(1) 2
i

i 1

1 (V )
r 1

− +

=
∑

−
and 

r 2
i

i 1

1 (X X)
r 1 =

−∑
−

must be equal, as well. This shows that: 

 

 
r p 1

(1) 2
i

i 1

1E( (V ) ) 1
r 1

− +

=
→∑

−
 

 
and: 
 

 
r p 1

(1) 2
i

i 1

1Var( (V ) ) 0,  as r
r 1

− +

=
→ →∞∑

−
 

 
which concludes the general proof of Lemma 4. 
 

RESULTS 
 
The exact distribution of T2: We, first, give two 
important remarks, based on previous calculations. 
 The algebraic representation of T2, given in 
Theorem 3, extends Bowker (1960) expression (3.3), or 
Anderson (1984) expression (23), p. 162, for the 
particular case we are studying. 
 T2, as presented in Theorem 3, is a generalization 
of the univariate case, p = 1, with (1)

i i 11V X X,  q =1= −  
and q1j = 0 for j ≠ 1. In this case, T2 equals t2 (the 
square of student’s t) and: 
  

2
2

2
i

i 1

rXt r1 (X X)
r 1 =

=
−∑

−
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 We now prove Theorem 1, using the result of 
Theorem 3. 
 
Proof of Theorem 1: From Lemmas 1, 2, 3, under the 
null hypothesis H0, T2 is distributed as the ratio of two 
independent χ2’s. Then, it is well known, by definition 
of the F statistic (see, for instance, Grimmett and 
Stirzaker (2001), section 4.10), that:  
 

 
T 2

r p 1
(1) 2

i

i 1

rX X / (p) T r p
( ) F(p, r p).

r 1 p(V ) / (r p)
− +

=

−
= −

−−∑
∼  

 
 This result proves Theorem 1, when the null 
hypothesis is true. It is easy to note, that, for the 
univariate case p = 1, 2 2T t F(1, r 1)= −∼ , under H0. 
 In the case where the null hypothesis is not true, we 
use the same rationale as before. Let us consider: 
 

 
T

2 0 0
r p 1

(1) 2
i

i 1

r(X ) (X )T 1 (V )
r 1

− +

=

− μ − μ
=

∑
−

  

 
with the denominator being same as before. Following 
notation as in Anderson (1984), p. 161, set 

*
0E[ r (X )]− μ = ν , so that 0r (X )− μ  is *N( , I)ν  

distributed and, consequently, the numerator of T2 has a 
non central x2 distribution. The denominator of T2 is the 
same as for the case where H0 was true, so that Lemma 
1 holds. Lemma 3 holds too, since, taking 0X − μ , 
instead of X , does not affect independency between 
numerator and denominator of T2. Finally, since the 
numerator of T2 has a non central x2  distribution, 

2T r p( )
r 1 p

−
−

is non central F. This result proves Theorem 

1, when H0 is not true. 
 
The limiting distribution of T2: We now give two 
important remarks, concerning the limiting distribution 
of T2: 
 
• In the univariate case, we know that, from Lemma 

2, 2rX  is x2(1) distributed. Then, using Lemma 4, 
we conclude that, under H0, as r→∞, t2 tends in 
distribution to x2(1) 

• Since, from Lemma 2, T 2rX X (p)χ∼ , we use 
Lemma 4, in the same way as  for p = 1 and we 
conclude that, under H0, as r→∞, T2 tends in 
distribution to x2(p). We also note that, if we 
replace p by 1, then 2 2 2T t (1)= → χ , in distribution, 
as r→∞, which coincides with the previous remark 

 We now prove Theorem 2, using the result of Theorem 3. 
 
Proof of Theorem 2: The limiting distribution of T2, 
mentioned in the above remarks, still remains valid, 
under H0, even if the random vector sample X1,…Xr  is 
not normally distributed. Indeed, in this case, it is 
sufficient to apply a multivariate central-limit theorem 
(Theorem 3.4.3 anderson (1984)), stating that the 
limiting distribution, as r→∞, of rX  is N(0,I)�  and, 
hence, we conclude that the limiting distribution of 

TrX X is x2(p). On the other hand, the asymptotic results 
of Lemma 4 still hold. Thus, using Proposition 6.3.8., 
of Brockwell and Davis (1991), for k = 1, we conclude 
that the limiting distribution of T2 is x2(p). This result 
proves Theorem 2. 
 

DISCUSSION 
 
  In the present article, we found an alternative form 
(representation) for an important particular case of 
Hotelling’s T2, which extends Bowker (1960) results, in 
order to prove usual multivariate exact and limiting 
theorems, using standard univariate statistics. We 
remark, that, for the univariate case p = 1, the usual 
form of T2 and the new representation of T2, given by 
Theorem 3, have exactly the same algebraic 
configurations and are both equal to the usual 
expression of t2. In this case, exact and asymptotic 
properties of t2 are easily derived. However, for the 
more complicated multivariate case, Theorem’s 3 result 
has the obvious advantage, over the usual form of T2, of 
using directly simple univariate results, obtained for p = 
1, in order to derive exact and asymptotic statistical 
properties for T2.  
 

CONCLUSION 
 
 An important and very well documented univariate 
distribution, arising from the normal distribution, is 
Student’s t. Our study showed how exact and 
asymptotic results, concerning t, can help deriving 
corresponding properties for a well known multivariate 
analogue of the square of t, namely Hotelling’s T2, by 
using a specific algebraic representation of T2. In other 
words, in the present article, standard univariate 
material was used in a quite straightforward manner for 
explaining multivariate theory. As a result, usual 
multivariate theoretical calculations are considerably 
simplified. 
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