A Priori Estimation of the Resolvent on Approximation of Born-Oppenheimer

¹Sabria Bouheroum- Mentri and ²Amina Benbernou

¹Department of Mathematics, University of Annaba B.P. 12 Annaba 23000 Algeria ²Department of Mathematics, University of Mostaganem B.P. 227 Mostaganem 27000 Algeria

Abstract: In this study, we estimate the resolvent of the two bodies Shrodinger operator perturbed by a potential of Coulombian type on Hilbert space when h tends to zero. Using the Feschbach method, we first distorted it and then reduced it to a diagonal matrix. We considered a case where two energy levels cross in the classical forbidden region. Under the assumption that the second energy level admits a non degenerate point well and virial conditions on the others levels, a good estimate of the resolvent were observed.

Key words: Distorsion, eigenvalues, estimation, resolvent, resonances

INTRODUCTION

The Born-Oppenheimer approximation technical^[1] has instigated many works one can find in bibliography the recent papers like^[2-5].

It consists to study the behaviour of a many body systems, in the limit of small parameter h as the particles masses (masses of nuclei) tends to infinity; (see the references therein for more information), we can describe it with a Hamiltonian of type $P = -h^2 \Delta_x - \Delta_y + V(x,y)$ on $L^2(IR_x^3 \times IR_y^{3p})$, when $h \to 0$ and V denote the interaction potentials between the nuclei of the molecule and the nuclei electrons.

The idea is to replace the operator

 $Q(x) = -\Delta_y + V(x,y)$ (in , $L^2(IR_y^{3p})^{\mathcal{X}}$ fixed) by the so-called electronic levels which be a family of its discrete eigenvalues: $\lambda_1(x), \lambda_2(x), \lambda_3(x),...$ and to study the operators P which can be approximatively given by

$$-h^2\Delta_x + \lambda_j(x)$$
, on $L^2(IR_x^3)$.

Martinez and Messirdi's works, are about spectral proprieties of P near the energy level E_0 such that $\inf_{R^n} \lambda_j \le E_0$. Martinez in^[6], studies the case where $\lambda_1(x)$ admits a nondegenerate strict minimum at some energy level λ_0 , the eigenvalues of P near λ_0 admits a complete

asymptotic expansion in half-powers of $h^{[2]}$. Messerdi and Martinez^[7] considers the case where λ_2 admits a minimum, such appears resonances for P. He gives an estimation of the resolvent of $O(h^{-1})$ at the neighbourhood of 0.

In this study we try to generalize this work to approximate the resolvent of P where V is a potential of Coulombian type at the neighbourhood of a point $x_0 \neq 0$.

In fact, we estimate the resolvent of the operator F_{μ}^{ς} , given by a reduction of the distorted operator P_{μ}^{ς} , of *P* modified by a truncature $\varsigma^{[8]}$; and we try to have a good evaluation of the order of $O(h^{-1/2})$.

We apply the Feshbach method to study the distorted operator P_{μ}^{ς} which allows us to goback to the initial problem and we put the virial conditions on λ_1 and λ_3 .

Hypothesis and results

Hypothesis: Let the operator

$$P = -h^2 \Delta_x - \Delta_y + V(x, y)$$
 (1)

on $L^2(IR_x^3 \times IR_y^{3p})$, when h tends to 0. $V(x,y) = V(x,y_1,y_2,y_3,...,y_p)$ is an interaction potential of Coulombian type

$$V(x,y) = \frac{\alpha}{|x|} + \sum_{j=1}^{p} \left[\frac{\alpha_{j}^{+}}{|y_{j} + x|} + \frac{\alpha_{j}^{-}}{|y_{j} - x|} \right] + \sum_{\substack{j,k=1\\j \neq k}}^{p} \frac{\alpha_{jk}}{|y_{j} - y_{k}|}$$
(2)

where $\alpha, \alpha_j^{\pm}, \alpha_{jk}$ are real constants, $\alpha > 0$ (α_j^{\pm} is the charges of the nuclei).

It is well known that P with domain $H^2(IR_x^3 \times IR_y^{3p})$ is essentially self-adjoint on

$$L^2(IR_x^3 \times IR_y^{3p})$$
.

For $x \neq 0$, $Q(x) = -\Delta_y + V(x, y)$ with domain $H^2(IR_y^{3p})$ is essentially self-adjoint on $L^2(IR_y^{3p})$

Remark 1.1: The domain of Q(x) is independent of x. To describe our main results we introduce the following assumptions:

(H1)
$$\forall x \in \mathbb{R}^{3n} \setminus \{0\}, \# \sigma_{disc}(Q(x)) \geq 3$$

Let λ_0 an energy level such that: $\lambda_j \cap [-\infty, \lambda_0] \leq 3$, denoting $\lambda_1(x), \lambda_2(x), \lambda_3(x)$ the first three eigenvalues of O(x).

(H2) we assume that the first tree eigenvalues λ_j , $\forall j \in \{1, 2, 3\}$ are simple at infinity:

$$|\mathbf{x}| \ge C \Rightarrow \inf_{\mathbf{j}, \mathbf{k} \in \{1, 2, 3\}} |\lambda_{\mathbf{j}}(\mathbf{x}) - \lambda_{\mathbf{k}}(\mathbf{x})| \ge \frac{1}{C}$$
 (3)

and

$$\varliminf_{j,k\in\{1,2,3\}} dist(\lambda_j(x)-\lambda_k(x)) \backslash \big\{ \lambda_1(x),\lambda_2(x),\lambda_3(x) \big\} \rangle 0$$

this means

 $\exists \delta_1 \rangle 0, \forall x \neq 0, \text{ and } \lambda \in \sigma(Q(x)) \setminus \{\lambda_1(x), \lambda_2(x), \lambda_3(x)\},$ we have

$$\inf_{1 \le j \le 3} \left| \lambda - \lambda_j(x) \right| \ge \delta_1 \tag{4}$$

Remark1.2: By Reed-Simon' results^[9], the first eigenvalue is automatically simple. (H3) we suppose that $\exists c \rangle 0$ such that

$$\forall x \in IR^3 \setminus \{0\}, \ \lambda_j \le c + \frac{\alpha}{x}, \ j \in \{1, 2, 3\}$$
 (5)

Remark 1.3: This hypothesis is still true for $\alpha_{\pm}\langle 0;$ λ_{1} also verifies (H3) and we can see with a simple computation that there exists c_{1} such that for all $x\neq 0$

$$\lambda_1(\mathbf{x}) \ge -\mathbf{c}_1 + \frac{\alpha}{|\mathbf{x}|} \tag{6}$$

(H4) We are in the situation where $\lambda_2(x)$ admits a nondegenerate strict minimum; creating a potential well

$$\label{eq:total_state} of the shape $\Gamma: \begin{cases} \nu_0 = \inf_{x \in IR - \{0\}} \lambda_2(x), \quad \nu_0 \langle \lambda_0(x) \\ \lambda_2^{-1}(\nu_0) = r_0, \ \lambda_2(x) \rangle 0, \quad \lambda_2^{"}(r_0) \rangle 0 \end{cases}$$

 $\exists \delta_{2} \rangle 0$ such that

$$\forall x \in R^3 \setminus \{0\}, \ \lambda_1(x) + \delta_2 \langle \min \{\lambda_2(x), \lambda_3(x)\}$$
 we note by

$$K = \{x \in R, \lambda_2(x) = \lambda_3(x)\}$$

and for $\delta\rangle 0$, we also note by: $K_\delta = \left\{x \in IR, dist(x,K) \leq \delta\right\}$

Let $\delta_0 \rangle \delta_1 \rangle 0$ such that

- * $K_{\delta_0} \setminus K_{\delta_1}$ is simply connex
- * $K_{2\delta_0} \cap U = \emptyset$
- * The connex composites of $IR^3 \setminus K_{\delta_1}$ are simply connex

(H5) Virial Conditions

It exists d>0 such that for $j \in \{2,3\}$,

The resonances of P are obtained by an analytic distorsion introduced by Hunziker^[8] and so they are defined as complex numbers ρ_j ($j=1,...,N_0$) such that for all $\epsilon \rangle 0$ and μ sufficiently small, $\text{Im}\,\mu \rangle 0$ $\rho_j \in \sigma_{\text{disc}}(P\mu)^{[3]}$. We denote de set of the resonances of P by: $\sigma(P) = \bigcup_{\text{Im}\,\mu \rangle 0, |\mu| \langle \epsilon} \sigma_{\text{disc}}(P_\mu)$

Where P_{μ} is obtained by the analytic distorsion satisfying: $P_{\mu} = U_{\mu} P_{\mu} U_{\mu}^{-1}$. So, P_{μ} can be extended to small enough complex values of μ as an analytic family of type^[9].

The analytic distorsion U_{μ} , for μ small enough associated to ν is defined on $C_0^{\infty}(IR_x^3 \times IR_y^{3p})$ by $U_{\mu}\phi(x,y) = \phi(x + \mu\nu(x), y_1 + \mu\nu(y_1),...,y_p + \mu\nu(y_p)) \big|J\big|^{1/2}$ where $J = J(x,y) = \det(1 + \mu D\nu(x) \prod_{j=1}^p \det(1 + \mu D(y_j))$ is the

Jacobien of the transformation $\Psi_{\mu}:(x,y)\to (x+\mu v(x),y_1+\mu v(x),...,y_p+\mu v(x)) \ \ \text{and}$

 Ψ_{μ} . $(x,y) \rightarrow (x + \mu \nu(x), y_1 + \mu \nu(x), ..., y_p + \mu \nu(x))$ and $\nu \in C^{\infty}(\mathbb{R}^3)$ is a vector field satisfying:

 $\exists N \rangle 0 \text{ , large enough such that: } \begin{cases} v(x) = 0, \text{ si } |x| \leq \frac{2}{N} \\ v(x) = x, \text{ si } |x| \geq r_0 - \epsilon' \end{cases}$ $(\epsilon') 0 \text{ , small enough, } |r_0| \rangle \frac{3}{N} + \epsilon' \text{).}$

Remark 1.4: The distorsion is close to the potential well.

We localise our operator near the well v_0 by introducing a truncate function $\varsigma \in C^{\infty}(IR^3)$ satisfying:

$$\begin{cases} \zeta = 1, \text{ si } |x| \ge \frac{2}{N} \\ \zeta = 0, \text{ si } |x| \le \frac{3}{2N} \\ \text{fixing } \alpha_0 \rangle v_0, \text{ we set} \end{cases}$$

$$\begin{split} Q_{\mu}^{\varsigma}(x) &= -U_{\mu} \Delta_{y} U_{\mu}^{-1} + \varsigma(x) V_{\mu}(x,y) + (1 - \varsigma(x)) \alpha_{0} \\ V_{\mu}(x,y) &= (x + \mu v(x), y_{1} + \mu v(x), ..., y_{p} + \mu v(x)) \\ \text{We also denote:} \\ P_{\mu}^{\varsigma} &= -h^{2} U_{\mu} \Delta_{x} U_{\mu}^{-1} + Q_{\mu}^{\varsigma}(x) \\ \text{With domain } H^{2}(IR_{x}^{3}) \; . \end{split} \tag{7}$$

Remark1.5: Like in ^[10], near ν_0 , $\sigma(P_\mu)$ and $\sigma(P_\mu^\varsigma)$ coincide up to exponentially small error terms. For this we will study P_μ^ς instead of P_μ .

RESULTS

Here we write the results of our works as following:

Theorem 1.6: Under assumptions (H1) to (H5) and for $\mu \in \mathbb{C}, |\mu|$ and h small enough, we have

$$\left\| \left(F_{\mu}^{\varsigma} - z \right)^{-1} \right\| = O\left(h^{-1/2} \right)$$

where F_{μ}^{ς} is the Feshbach reduced operator of P_{μ}^{ς} verifying

$$F_{\mu}^{\varsigma} = -\frac{h^2}{(1+\mu)^2} \Delta_x I + M_{\mu}^{\varsigma} + \tilde{R}_{\mu}^{\varsigma} \quad \text{and the error} \quad \tilde{R}_{\mu}^{\varsigma} \quad \text{is}$$

satisfying: $\left\|\tilde{R}_{\mu}^{\,\varsigma}\right\|_{L(H^m\oplus H^m,H^{m-l}\oplus H^{m-l}}=O(h^2)$

We need for our proof the main important theorem for the operator $P_{2,\mu}^{\varsigma}$ which is the distorsion of the operator $P_{2,\mu}$:

$$P_{2,\mu}^{\varsigma} = -h^{2} U_{\mu} \Delta_{x} U_{\mu}^{-1} + \lambda_{2} (x + \mu v(x))$$
 (8)

at the neighbourhood of point x_0 of the well such that $(\forall \epsilon' \rangle 0$, small enough, $||x_0|\rangle r_0 + \epsilon'$), the distorsion $P_{2,\mu}$ is in fact a dilatation of angle θ such that $e^{\theta} = (1 + \mu)$. We denote it by $P_{2,\theta}$ [11] and is defined by

$$P_{2\theta} = -h^2 \Delta_x + \lambda_2 (xe^{\theta}) \tag{9}$$

Let e_j , $j=1,...,N_0$ be the eigenvalues of the operator $P_0=-\frac{d^2}{dr^2}+\frac{1}{2}\lambda_2^{"}(r_0)(r-r_0)^2) \mbox{ and } \gamma_j \mbox{ complex circles}$ centred at e_j h.

Theorem 1.7: Under assumptions (H1)- (H5), for $\theta \in C$, $|\theta|$ and h small enough and for $(\forall \epsilon') \theta$, small enough, $||x_0|| \langle r_0 + \epsilon' \rangle$, the resolvent of the distorted operator defined by (9) satisfies the estimate

$$\begin{split} \left\| \left(P_{2,\theta} - z \right)^{-1} \right\| &= O\left(h^{-1/2} \right), & \text{uniformly} \\ z \in \left[-\epsilon' - x_0, C_0 h - x_0 \right] &\text{outside of the } \gamma_j \,. \end{split}$$

Before we prove this theorem, we introduce the so-called Grushin problem associated to the distorted operator P_{μ} .

The reduced Feshbach operator: Now, we try to reduce the operator P_{μ}^{ς} by the Feshbach method into a

matricial operator of type:
$$-\frac{h^2}{(1+\mu)^2}\Delta_x I + M_{\mu}^{\varsigma} + \tilde{R}_{\mu}^{\varsigma}$$

where M_{μ}^{ς} is the matrix of eigenvalues of Q_{μ}^{ς} and $\tilde{R}_{\mu}^{\varsigma}$ is the remainder of order $O(h^2)$

The study of the distorted operator P_{μ}^{ς} : We begin our study by the operator Q_{μ}^{ς} which is defined by: $Q_{\mu}^{\varsigma} = U_{\mu}Q(x + \mu v(x))U_{\mu}^{-1} \tag{10}$ For $x \neq 0$, we denote also

$$\tilde{Q}_{\mu}(x) = Q_{\mu}(x) - \frac{\alpha}{\left|x + \mu v(x)\right|} \quad \text{and} \quad \tilde{\lambda}_{j}(x) = \lambda_{j} - \frac{\alpha}{\left|x\right|}, \ j \in \{1, 2, 3\}$$

Let C(x) be a family of continuous closed simple loop of C enclosing $\tilde{\lambda}_j(x)$, $j \in \{1,2,3\}$ and having the rest of $O(\tilde{Q}_0(x))$ in its exterior. The gap condition (4) permits us to assume that:

$$\min_{\mathbf{x} \in \mathbb{R}^3} \operatorname{dist}(\gamma(\mathbf{x}), \sigma(\tilde{\mathbf{Q}}_0(\mathbf{x})) \ge \frac{\delta}{2}$$
 (11)

Using the relation (6) and (H3), we can take C(x) compact in a set of C. So, we deduce from (11) the following result^[3].

Lemma 2.1

$$\begin{split} &1.\ \forall j,k\in \qquad \{1,...,p\}, \qquad j\neq k,\ \beta\in IN^{3p}\quad, \qquad \text{the}\\ &\text{operators}\,\frac{1}{\left|y_{_{j}}\pm x\right|}\!\!\left(\tilde{Q}_{_{0}}\!\left(x\right)-z\right)^{\!-1}, \quad \frac{1}{\left|y_{_{j}}-y_{_{k}}\right|}\!\!\left(\tilde{Q}_{_{0}}\!\left(x\right)-z\right)^{\!-1} \end{split}$$

and $\partial^{\beta} \left(\tilde{Q}_0(x) - z \right)^{-1}$ are uniformly bounded on $L^2(IR_v^{3p}), x \in IR^3, z \in C(x)$

2. If $\mu \in \text{small enough}$, then for $x \in IR^3$, $z \in \text{,the}$ operator $\left(\tilde{Q}_{\mu}(x) - z\right)^{-1}$ exists and satisfies uniformly $\left(\tilde{Q}_{\mu}(x) - z\right)^{-1} - \left(\tilde{Q}_{0}(x) - z\right)^{-1} = O\left|\mu\right|.$

Now we define for $\mu \in C$ small enough, the spectral projector associated to \tilde{Q}_{μ} and the interior of C(x).

$$\pi_{\mu}(x) = \frac{1}{2\pi} \int_{\gamma(x)} (z - \tilde{Q}_{\mu}(x))^{-1} \text{ and } rg\pi_{\mu} = 1$$

This projector permits us to construct the Grushin problem associated to the operator P_{μ}^{ς} .

Problem of Grushin associated with the operator P_{μ}^{ς} : We begin this section by the result which is (lemma1-1 of 12 and proposition 5-1 of 17.

Proposition 2.2: Assume (H1), (1.7), (1.9), (1,10) hold, then for $\mu \in C$, $z \in C$ small enough, there exist N functions $\omega_{k,\mu}(x,y) \in C^0(IR^3,H^2(IR^{3p}))$, (k=1,2,3), depending analytically on $\mu \in$, such that

i.
$$\left\langle \omega_{j,\mu} \left| \omega_{k,\mu} \right\rangle_{L^{e}(IR^{3p})} = \delta_{j,k} \right\rangle$$

ii. For
$$|x| \ge \frac{3}{N}$$
, $(\omega_{k,\mu})_{1 \le k \le 3}$ form a basis of Ran $\pi_{\mu}(x)$

iii.
$$\in C^{\infty}\left(\left\{\left|x\right|\left(\frac{2}{N}\right\}, H^{2}(IR^{3p})\right.\right)$$

iv. For |x| large enough, $\omega_{k,\mu}(x)(x)$ is an eigen function of $Q_{\mu}(x)$ associated with $\lambda_k(x + \mu\omega(x))$

We first introduce the family $\left\{\omega_{l,\mu},\omega_{2,\mu},\omega_{3,\mu}\right\}$ of $\operatorname{Ran}\pi_{\mu}(x)$ depending analytically on μ for μ small enough and normalized in $L^2(\operatorname{IR}^{3p}_y)$ by $\left\langle\omega_{i,\mu}(x),\omega_{j,\overline{\mu}}(x)\right\rangle_{L^2(\operatorname{IR}^{3p}_y)}=\delta_{ij}$ and then we associate the two following operators

$$R_{\mu}^{-}:\bigoplus_{1}^{3}L^{2}(IR^{3})\rightarrow L^{2}(IR^{3p})$$

$$u^{-} = (u_{1}^{-}, u_{2}^{-}, u_{3}^{-}) \rightarrow R_{\mu}^{-} u^{-} = \sum_{k=1}^{3} u_{k}^{-} \omega_{k,\mu}(x)$$

$$R_{\mu}^{+} = (R_{\mu}^{-})^{*} : L^{2}(IR^{3p}) \to \bigoplus^{3} L^{2}(IR^{3})$$

$$u = {}^{t}(\langle u, \omega_{\overline{u},1} \rangle_{V}, \langle u, \omega_{\overline{u},2} \rangle_{V}, \langle u, \omega_{\overline{u},3} \rangle_{V})$$

where ${}^{t}A$ denote the transposed of the operator A, $\left\langle .,.\right\rangle_{Y}$ the inner product on $L^{2}(IR^{3p})$ and $\left\langle .,\omega_{\overline{\mu},1}\right\rangle_{Y}$ is the adjoin of the operator $L^{2}(IR^{n}) \ni v \mapsto vu_{\mu,j} \in L^{2}(IR^{n+P})$,

$$\begin{split} u_{\mu,k} &= u(x + \mu v(x)) \text{ and we put } \hat{\pi}_{\mu} = 1 - \pi_{\mu} \text{ , where} \\ \pi_{\mu} &= \left\langle u, \omega_{\overline{\mu}, l} \right\rangle_{Y} \omega_{\mu, l} + \left\langle u, \omega_{\overline{\mu}, l} \right\rangle_{Y} \omega_{\mu, 2} + \left\langle u, \omega_{\overline{\mu}, 3} \right\rangle_{Y} \omega_{\mu, 3} \end{split}$$

As P^{ς}_{μ} and $\omega_{\mu,k}$, k=1,2,3 have analytic extensions with μ , the Grushin problem is then defined, for $z \in C$, by:

$$P_{\mu}^{\varsigma}(z) = \begin{pmatrix} P_{\mu}^{\varsigma} - z & R_{\mu}^{+} \\ R_{\mu}^{-} & 0 \end{pmatrix} = \begin{pmatrix} P_{\mu}^{\varsigma} - z & \omega_{l,\mu} & \omega_{2,\mu} & \omega_{3,\mu} \\ \langle ., \omega_{l,\mu} \rangle_{Y} & 0 & 0 & 0 \\ \langle ., \omega_{2,\mu} \rangle_{Y} & 0 & 0 & 0 \\ \langle ., \omega_{3,\mu} \rangle_{Y} & 0 & 0 & 0 \end{pmatrix}$$
(12)

which sets on $H^2(IR^{3p}) \oplus (\bigoplus_{i=1}^3 L^2(IR^3))$ to $L^2(IR^{3p}) \oplus (\bigoplus_{i=1}^3 H^2(IR^3))$

The following proposition, gives the inverse of the operator (12) by using a result of Grushin problem. This is proved in^[3,6].

Proposition 2.3: $\forall z \in C$ close enough to λ_0 , P_μ^ς is invertible and we can write its inverse:

$$P_{\mu}^{\varsigma-1} = \begin{pmatrix} X_{\mu}^{\varsigma} & X_{\mu,+}^{\varsigma} \\ X_{\mu,-}^{\varsigma} & X_{\mu,-+}^{\varsigma} \end{pmatrix},$$

With $X^{\varsigma}_{\mu}(z)=(P^{\,\varsigma}_{\,\,\mu}-z)^{-1}\hat{\pi}_{\mu}(x)$ where $(P^{\,\varsigma}_{\,\,\mu}-z)^{-1}$ is the bounded inverse of the restriction of $\hat{\pi}_{\mu}(P^{\varsigma}_{\mu}-z)$ to $\left\{u\in H^2(IR^{\,3(n+p)},\hat{\pi}u=u\right\}.$

$$X_{\mu,\scriptscriptstyle{+}}^\varsigma(z) = (\omega_{\scriptscriptstyle{k},\mu} - X_{\scriptscriptstyle{\mu}}^\varsigma(z) P_{\scriptscriptstyle{\mu}}^\varsigma(.\omega_{\scriptscriptstyle{k},\mu}))_{\scriptscriptstyle{1 \leq k \leq 3}}\,,$$

$$X_{\mu,-}^\varsigma(z)={}^t\Bigl(\Bigl\langle(1-P_\mu^\varsigma(z)X_\mu^\varsigma)(.),\omega_{k,\overline{\mu}}\Bigr\rangle_{1\leq k\leq 3}\Bigr) \ \ \text{and} \ \ \\$$

$$X_{\mu,-+}^\varsigma(z) = \left(z\delta_{jk} - \left\langle \left(P_\mu^\varsigma - P_\mu^\varsigma X_\mu^\varsigma(x) P_\mu^\varsigma\right) (.\omega_{j,\mu}), \omega_{j,\overline{\mu}} \right\rangle_{L^2(\mathbb{R}^{3p})} \right)_{1 \leq i,k \leq 3}$$

Remark 2.4

the matrix:

1. For $z \in C$, close enough to λ_0 , we have $z \in \sigma(P_\mu^\varsigma)$ if and only if $\exists \mu, |\mu|$ small enough and $\operatorname{Im} \mu \rangle 0$, such that $z \in \sigma_{\operatorname{disc}}(X_{\mu,-+}^\varsigma(z))$ where $X_{\mu,-+}^\varsigma(z) : \bigoplus_{i=1}^3 H^2(\operatorname{IR}^3) \to L^2(\operatorname{IR}^3)$, is a pseudo-differential operator of principal symbol defined by

$$\begin{split} B(x,\xi,z) &= zI - (\left\langle \omega_{_{j,\mu}}(x) \middle| (t_{_{\mu}}(\xi) + Q_{_{\mu}}^{\varsigma}(x)) \omega_{k,\mu}(x) \right\rangle_{L^{2}(\mathbb{IR}^{3})})_{1 \leq j,k \leq 3} \\ \text{and} \ \ t_{_{\mu}}(\xi) \ \ \text{is the principal symbol of} \ \ -h^{2}U_{_{\mu}}\Delta_{_{x}}U_{_{\mu}}^{-1} \end{split}$$

2. z is a resonance of the operator P^{ς}_{μ} only and only if, $\exists \mu \in C$, $|\mu|$ small enough $Im \mu \rangle 0$, such that: $0 \in \sigma_{disc}(X_{\mu,-+})$ or $0 \in \sigma_{disc}(F^{\varsigma}_{\mu\mu,-+})$ where F^{ς}_{μ} is the Feshbach operator $(F^{\varsigma}_{\mu} = z - X_{-+\mu}^{-\varsigma})$ our goal is to takeback the initial problem to a problem on $L^2(IR^3) \oplus L^2(IR^3) \oplus L^2(IR^3)$.

Reduced Feshbach operator: To reduce the Feshbach operator in a matricial operator, we input:

$$\Phi_{\mu}^{\varsigma} = P_{\mu}^{\varsigma} - P_{\mu}^{\varsigma} X_{\mu}^{\varsigma}(x) P_{\mu}^{\varsigma} \tag{13}$$

$$F_{\mu}^{\varsigma} = \left(\left\langle \Phi_{\mu}^{\varsigma} (.\omega_{j,\mu}(x)) \middle| \omega_{k,\overline{\mu}}(x) \right\rangle_{Y} \right)_{1 \le j,k \le 3}$$
(14)

and

$$\Phi_{1,\mu}^{\varsigma}(z) = \left(\left\langle \Phi_{\mu}^{\varsigma}(.\omega_{1,\mu}(x)) \middle| \omega_{1,\overline{\mu}}(x) \right\rangle \right)_{1 \le i,k \le 3} \tag{15}$$

The following proposition give us the estimation of the resolvent of the operator (15).

Proposition 2.5: For $z \in C$, |z| small enough, $\mu \in C$, $|\mu|$ small enough, the operate or $(\Phi_{\mu}^{1\varsigma}(z)-z)$ is bijective for $H^2(IR^3)$ to $L^2(IR^3)$. Its inverse is extended for H^m in H^{m+j}

 $H^m = H^m(L^2(IR_x^n, L^2(IR^p)), \forall m \in \mathbb{Z}$ and verify for $j = \{1, 2, 3\}$, h > 0 small enough:

$$\|(\Phi_{1,\mu}^{\varsigma}(z)-z)^{-1}\|_{L(H^m,H^{m+j})} \le \frac{C(m)}{h^{j}(Im\mu)}$$

To prove this proposition, we first use a lemma $in^{[3]}$, to prove the following lemma:

Lemma 2.6: $\forall m \in Z$, the operator $X_{\mu}^{\varsigma}(z)$ is uniformely is extensible in a bounded operator on $H^m(L^2(IR_x^n), L^2(IR^p))$, $\forall m \in Z$, for h > 0, $z \in Z$ and $\mu \in Z$ small enough and

$$\|X_{\mu}^{\varsigma}\|_{L(H^{m},H^{m+2})} = O(h^{-2})$$

See [3] for the proof.

Lemma 2.7: We assume that

$$\left\| (P_{1,\mu}^{\varsigma} - z)^{-1} \right\|_{L^{2}(H^{m}, H^{m+j})} = O\left(\frac{1}{h^{j} \operatorname{Im} \mu}\right)$$

for h > 0, $z \in C$ and $\mu \in C$ small enough, where

$$P_{1,\mu}^{\varsigma} = -h^2 \frac{1}{(1+\mu)^2} \Delta_x + \lambda_1(x + \mu v(x)) -$$

$$h^2 \frac{1}{(1+\mu)^2} \langle \Delta_x (.\omega_{l,\mu}(x) | \omega_{l,\overline{\mu}}(x) \rangle_Y -$$

$$-h^2 \left\langle R_{\mu}(x, D_x) (.\omega_{l,\mu}(x) \middle| \omega_{l,\bar{\mu}}(x) \right\rangle_{v}$$

 $R_{\mu}(x,D_x),$ is an differiential operator of coefficients C^{∞} .

Proof of lemma 2.7: Using (H5) we have: $\operatorname{Im} \frac{1}{(1+\mu)^2} \lambda_1(x+\mu v(x)) \leq -\frac{\operatorname{Im} \mu}{C_1}, \text{ so}$

$$\left\| \left(-h^2 \frac{1}{(1+\mu)^2} \Delta_x + \lambda_1 (x + \mu v(x)) - z \right)^{-1} \right\|_{L(L^2(\mathbb{R}^n))} \le \frac{C_2}{\text{Im } \mu}$$

and we easily deduce with a simple computation that

$$\left\| (P_{l,\mu}^{\varsigma} - z)^{-l} \right\|_{L^{2}(H^{m}, H^{m+j})} = O(\frac{1}{h^{j} \operatorname{Im} \mu})$$

Proof of the proposition 2.5: From (13) and (15), we have $\Phi_{l,\mu}^{\varsigma} = \left\langle (P_{\mu}^{\varsigma} - P_{\mu}^{\varsigma} X_{\mu}^{\varsigma}(z) P_{\mu}^{\varsigma} (.\omega_{l,\mu}(x) \middle| \omega_{l,\overline{\mu}}(x) \right\rangle$, then we subtitue P_{μ}^{ς} from (7) with

$$U_{\mu}\Delta_{x}U_{\mu}^{-1} = \frac{1}{(1+\mu)^{2}}\Delta_{x} + R_{\mu}(x,D_{x})$$
, where $R_{\mu}(x,D_{x})$

is a second order differential operator with C^{∞} coefficients in X with compact support, analytic in μ and whose derivative of any kind compared to X are $O(|\mu|)$: and we put

$$\begin{split} &\Lambda_{\mu}^{\varsigma} = \frac{1}{\left(1+\mu\right)^{4}} \left\langle \Delta_{x} X_{\mu}^{\varsigma} \Delta_{x} (.\omega_{l,\mu}(x)), \omega_{l,\overline{\mu}}(x) \right\rangle_{Y} + \\ &+ \frac{1}{\left(1+\mu\right)^{2}} \left\langle (R_{\mu}(x,D_{x})X_{\mu}^{\varsigma} \Delta_{x} + \Delta_{x} X_{\mu}^{\varsigma} R_{\mu}(x,D_{x})) \right\rangle_{Y}. \end{split}$$

Using the fact that

$$\begin{split} \hat{\pi}_{\mu} \omega_{l,\mu} &= 0, \ X_{\mu}^{\varsigma} = \hat{\pi}_{\mu} X_{\mu}^{\varsigma} \hat{\pi}_{\mu} \ , \left\langle \omega_{l,\mu}, \omega_{l,\overline{\mu}} \right\rangle = 1 \,, \quad \text{we have:} \\ \Phi_{l,\mu}^{\varsigma} (z) &= \widecheck{P}_{l,\mu}^{\varsigma} - h^4 \Lambda_{\mu}^{\varsigma} \ , \text{ where} \end{split}$$

$$\widecheck{P}_{1,\mu}^{\varsigma} = -h^2 \frac{1}{(1+\mu)^2} \Delta_x + \lambda_1 (x + \mu v(x))$$

$$-\frac{1}{(1+\mu)^2} \left\langle \Delta_{\mathbf{x}} (.\omega_{\mathbf{l},\mu}(\mathbf{x}) \middle| \omega_{\mathbf{l},\overline{\mu}}(\mathbf{x}) \right\rangle_{\mathbf{Y}}$$

$$-h^2 \left\langle R_{\mu}(x,D_x) (.\omega_{l,\mu}(x) \Big| \omega_{l,\overline{\mu}}(x) \right\rangle_Y$$

We have $R_x(x,D_x)$ bounded, so Λ_μ^ς is $O(h^2)$ from H^m to H^m and we also see from (H5) and lemma2.6 that: for h small enough, $\left\|(P_{l,\mu}^\varsigma-z)^{-l}\right\|_{L(L^2)}=O(\frac{1}{\text{Im}\,\mu})$, then, we deduce

$$\begin{split} & \left\| (\breve{P}_{1,\mu}^{\varsigma} - z)^{-1} \right\|_{L^{2}(H^{m}, H^{m+j})} = O(\frac{1}{h^{j} \operatorname{Im} \mu}). \text{ Finally we have:} \\ & \left\| (\Phi_{1,\mu}^{\varsigma}(z) - z)^{-1} \right\|_{L(H^{m}, H^{m+j})} = O(\frac{1}{h^{j} \operatorname{Im} \mu}) \end{split}$$

Proof of theorems

Proof of theorem 2.1: Proposition 3.5 permits us to reduce the Feshbach operator F_u^{ς} in a matricial operator

 $2x2, A^{\varsigma}_{\mu}$, where

$$A_{\mu}^{\varsigma} = \left\{ \left\langle \Phi_{\mu}^{\varsigma} \big(.\omega_{i,\mu}\big) + T_{\mu}^{j\varsigma} \big(.\omega_{l,\mu}\big), \omega_{l,\overline{\mu}} \right\rangle_{Y} \right\}_{i,j=2,3}$$

Now, we consider a solution $\alpha = \alpha_1 \oplus \alpha_2 \oplus \alpha_3 \in L^2(IR^n) \oplus L^2(IR^n) \oplus L^2(IR^n)$ of the equation: $F_u^s(z)\alpha = z\alpha$

The operators
$$T_{\mu}^{j\varsigma}$$
 are defined by:
$$T_{\mu}^{j\varsigma}(z)\alpha_{j} = -(\Phi_{\mu}^{1\varsigma}(z) - z)^{-1} \left\{ \left\langle \Phi_{\mu}^{\varsigma}(\alpha_{j}\omega_{j,\mu},\omega_{j,\overline{\mu}} \right\rangle_{Y} \right\}_{i=2,3},$$

hence, the spectral study of the Feshbach F_{μ}^{ς} becomes the study of the operator A_{μ}^{ς} on $L^{2}(IR^{n}) \oplus L^{2}(IR^{n})$ by: $\alpha_{l} = -(\Phi_{\mu}^{l\varsigma}(z) - z)^{-l} = \left\{ \left\langle \Phi_{\mu}^{\varsigma}(\alpha_{2}\omega_{2,\mu}, \omega_{2,\overline{\mu}})_{v} + \left\langle \Phi_{\mu}^{\varsigma}(\alpha_{2}\omega_{3,\mu}, \omega_{3,\overline{\mu}})_{v} \right\rangle \right\}$

Then the eigenvalues equation of $F_{\mu}^{\varsigma}(z)$ becomes:

$$\begin{cases} \alpha_1 = (T_{\mu}^{2\varsigma}(z) \oplus T_{\mu}^{3\varsigma}(z))(\alpha_2 \oplus \alpha_3) \\ A_{\mu}^{\varsigma}(z)(\alpha_2 \oplus \alpha_3) = z(\alpha_2 \oplus \alpha_3) \end{cases}$$

So we establish easily

$$A_{\mu}^{\varsigma} = -h^2 \frac{1}{\left(1+\mu\right)^2} \Delta_x + M_{\mu}^{\varsigma} + \tilde{R}_{\mu}^{\varsigma} \,, \quad \text{where} \quad M_{\mu}^{\varsigma} \quad \text{is} \quad a$$

diagonal matrix outside of $K_{2\delta_0}$ and it equal to:

$$\begin{split} M_{\mu}^{\varsigma} &= \left\{ \left\langle Q_{\mu}^{\varsigma}(x) (.\omega_{i,\mu}) \middle| \omega_{j,\overline{\mu}} \right\rangle_{Y} \right\}_{i,j=2,3} \\ &= \begin{pmatrix} \lambda_{2}(x + \mu v(x)) & 0 \\ 0 & \lambda_{3}(x + \mu v(x)) \end{pmatrix} \end{split}$$

where $\lambda_2(x+\mu v(x))$, $\lambda_3(x+\mu v(x))$ are the eigenvalues of $Q_\mu^\varsigma,~\forall x\in IR-\big\{0\big\}$

The remainder

$$\left\|\tilde{R}_{\mu}^{\varsigma}(z,h)\right\|_{L(H^{m}\oplus H^{m},H^{m-l}\oplus H^{m-l}}=O\left(h^{2}\right),\,\forall\,m\in Z\,\,uniformly$$
 for $h\,\rangle\,0$ and $\,z\in C\,\,closed\,\,to\,\lambda_{0}$

At the end we prove the second result. To describe it, we apply a technical of Briet Combs Duclos^[13].

Let $J_i \in C_0^{\infty}(|x-x_0| \le \delta)$, $(\delta)0$ fixed small enough and x_0 a point of maximum) and $J_e \in C^{\infty}(IR^n)$ such that: $J_i = 1$ near x_0 and $J_i^2 + J_e^2 = 1$

J is an identification mapping such that:

$$J: L^{2}(IR^{n}) \oplus L^{2}(\sup pJ_{e}) \rightarrow L^{2}(IR^{n})$$
$$J(u \oplus w) = J_{i}u + J_{e}w$$

It is easily proved that: $JJ^* = 1_{L^2(IR^n)}$

Now, if we note P^Ω_μ the Dirichlet realisation of P^ς_μ on Ω , on Ω , x=v(x) and the distorsion $x+\mu v(x)=xe^\theta$,

is an analytic dilatation (whose Dirichlet realisation is the operator H_u^c obtained for c = 1). We set

$$H_{\theta}^{i} = -h^{2}e^{-2\theta}\Delta + \left\langle \lambda_{2}^{"}(x_{0})(x - x_{0}), (x - x_{0}) \right\rangle e^{2\theta}$$

$$H_{\theta} = P_{\theta}^2 = -h^2 e^{-2\theta} \Delta + \lambda_2(xe^{\theta})$$

 $H_{\theta}^{e} = H_{\theta} \Big|_{L^{2}(sup \, pJ_{e})}$, with Dirichlet conditions or $\partial sup \, pJ_{e}$

Remark 3.1: Since $\inf_{x \in \text{suppJ}_e} \text{Re } e^{2\theta} \lambda_2(xe^{\theta}) \rangle 0$, $(H_{\theta}^e - z)^{-1}$ is uniformly bounded for |z| and h small

Before we prove the second result, we introduce the following lemma

Lemma 3.2: For all $p \in [0,1]$, $\|x\|^p (H_\theta^i - z)^{-1}\|_{L(L^2)} = O(h^{\frac{p-1}{2}})$, uniformly for z outside of $\gamma(x)$ $z \in [-\varepsilon - x_0, C_0 h - x_0] + i[-\varepsilon - x_0, C_0 h - x_0]$, Im $\theta \ge 0$, and h small enough.

Proof of lemma 3.2: If we put $y = \frac{x - x_0}{\sqrt{h}}$, we can

write H_i^{θ} :

enough.

$$H_i^{\theta} = hH_i^{\theta} \tag{16}$$

where
$$H_i^0 = -e^{-2\theta} \Delta_y + \frac{1}{2} \langle \lambda''(x_0) y, y \rangle + h^{-1} \Im(\epsilon)$$
,

with
$$\Im(\varepsilon) = \varepsilon(1 + (x - x_0)e^{\theta} + \frac{1}{2}(x - x_0)^2 e^{2\theta})$$

It is enough to show that, for $\theta = i\alpha$, $\alpha \ge 0$, small enough. We have from (16)

$$|x|^{p} (H_{\theta}^{i} - z)^{-1} = h^{\frac{p}{2} - \frac{1}{2}} |y|^{2} (H_{\theta}^{0} - zh^{-1})^{-1}$$
and the eigenvalues of the operator H_{i}^{0} in

and the eigenvalues of the operator H_i^*

$$\left]\!-\!\infty,C_{\scriptscriptstyle 0}-x_{\scriptscriptstyle 0}\right]\!+\!i\;IR$$
 are $\,e_{\scriptscriptstyle 1},...,e_{\scriptscriptstyle N}^{}\,.$

We distinguish three cases for p = 0.

$$\begin{split} 1/ &\quad \text{If } z \in \left[-Ch-x_0,C_0h-x_0\right]+i\left[-Ch-x_0,C_0h-x_0\right]: \\ \text{we deduce for all } C &\quad 0, \ (H_\theta^0-zh^{-1})^{-1} \ \text{is bounded on } L^2 \\ \text{uniformly for } z \text{ outside the } \gamma_1, \text{ so } (17) \text{ is verified.} \end{split}$$

2/ If
$$z \in [-\varepsilon - x_0, C_0 h - x_0] + i[-\varepsilon - x_0, Ch - x_0]$$
: then for $u \in C_0^{\infty}(IR^n)$:

$$e^{2\theta}H_{\theta}^{0} = -\Delta y + \frac{1}{2}\langle \lambda''(x_{0})y, y \rangle e^{4\theta} +$$

$$h^{-1}(z+\varepsilon(1+(x-x_0)e^{3\theta}+\frac{1}{2}(x-x_0)^2e^{4\theta})$$

and

$$\begin{split} & \text{Im} \left\langle e^{2\theta} \left(H_{\theta}^0 - z h^{-1} \right) u, u \right\rangle = \frac{1}{2} \sin 4\alpha \left\langle \left\langle \lambda \, ''(x_0) y, y \right\rangle u, u \right\rangle - \\ & - \left\lceil h^{-1} (z \sin 2\alpha + \text{Im} \, z \cos 2\alpha + h^{-\frac{1}{2}} (y \sin 3\alpha + z \cos 4\alpha) \right] \left\| u \right\|^2 \end{split}$$

We take particularly α small enough and C large enough such that: $C\cos 2\alpha C_0 \sin 2\alpha$

At least we obtained

$$\left|\left\langle e^{2\theta}(H_{\theta}^{0}-zh^{-1})u,u\right\rangle\right| \geq h^{-\frac{1}{2}}(x_{0}\sin2\alpha+y\sin3\alpha)\left\|u\right\|^{2}$$
 so the result is also verified. It remain the case:

$$3/\text{If } z \in [-\varepsilon - x_0, -Ch - x_0] + i[-Ch - x_0, C_0h - x_0]:$$

$$Re \Big\langle e^{2\theta} (H_\theta^0 - zh^{-1}) u, u \Big\rangle$$

 $\geq h^{-\frac{1}{2}} (\text{Re} z \cos 4\alpha - \text{Im} z \sin 2\alpha + y \cos 3\alpha)$

we deduce the estimation when $C \ C_0$, α small enough and C large enough such that $\cos 4\alpha \ \sin 2\alpha$ Now we consider the case when $p \neq 0$,

$$\begin{split} &e^{2\theta}(H_{\theta}^{0}-zh^{-1})=-\Delta+\frac{1}{2}e^{4\theta}\left\langle \lambda"(x_{0})y,y\right\rangle \text{ and } \\ &-zh^{-1}e^{2\theta}+h^{-1}e^{2\theta}\Im(\epsilon) \\ &\left\|-\Delta+\frac{1}{2}e^{4\theta}\left\langle \lambda"(x_{0})y,y\right\rangle-zh^{-1}e^{2\theta}+h^{-1}e^{2\theta}\Im(\epsilon)\right\| \\ &\geq\left\|\frac{1}{2}\cos4\alpha\left\langle \lambda"(x_{0})y,y\right\rangle u\right\|_{2}\geq\frac{1}{C}|y|^{2}\left\|u\right\|_{L^{2}} \end{split}$$

if we put $u = (H_{\theta}^{0} - zh^{-1})^{-1}v$ the result is deduced from a priori standard estimation.

Proof of theorem 1.2: We put $H_{\theta}^{d} = H_{\theta}^{i} \oplus H_{\theta}^{e}$ and $\Pi = H_{\theta}J - JH_{\theta}^{d}$, for z outside the spectrum of H_{θ} , with a simple calculation we obtain:

$$(H_{\theta} - z)^{-1} = J(H_{\theta}^{d} - z)^{-1}J^{*}(1 + \Pi(H_{\theta}^{d} - z)^{-1}J^{*})^{-1}$$
 (18)
Using the lemma3.2 (with $p = 2$) and the lemma3.1of
Briet Combs Duclos^[13], we can easily prove that: $\exists \beta \langle 1 \rangle$

Briet Combs Duclos^[13], we can easily prove that: $\exists \beta \langle 1$ such that

$$\left\| \Pi (H_{\theta}^{d} - z)^{-1} J^{*} \right\| \leq \beta \tag{19}$$

Using the lemma 3.2 and (19), we obtain from (18) $\|(H_{\theta}-z)^{-1}\| \le C \|(H_{\theta}^d-z)^{-1}\|$, finally the result is obtained from lemma 3.2 and remark 3.1

REFERENCES

- 1. Born, M. and R. Oppenheimer, 1927. Zur quanten theorie der moleklen. Annalen der Physic., 84: 457.
- Combes, J.M., P. Duclos and R. Seiler, 1981. The Born-Oppenheimer Approximation, in Rigorous Atomic and Molecular Physics. Eds., G. Velo, A. Wightman, pp: 185-212, New York. Plenum.
- 3. Martinez, A., 1989. Développements asymptotiques et effet tunnel dans l'approximation de Born-Oppenheimer. I.H.P, 49: 239-25.
- Martinez, A., 1991. Résonances dans l'approximation de Born-Oppenheimer I. J. Diff. Equ., 91: 204-234.
- 5. Martinez, A., 1991. Résonances dans l'approximation de Born-Oppenheimer II, largeur des résonances. Comm. in Math. Phys., pp : 135.
- Martinez, A., 1988. Estimation de l'effet tunnel pour le double puits II, états hautement excités. Bull SMF.
- 7. Martinez, A. and B. Messirdi, Resonances of Diatomic Molecules in the Born-Oppenheimer approximation.
- 8. Hunziker, W., 1986. Distorsion analyticity and molecular resonance curves. Annales de l'I.H.P. (Section Physique Théorique).
- 9. Reed, M. and B. Simon, 1978. Methods of Modern Mathematical Physics T1-T4. Academic Press.
- 10. Helffer, B. and J. Sjostrand, 1984. Multiple wells in the semi-classical limit I. Comm. Part. Diff. Equ., 9: 337-408.
- Cycon, H., 1985. Resonances defined by modified dilatation. Helv. Phys. Acta, 58: 969-981.
- 12. Klein, M., A. Martinez, R. Seiler and X.P. Wang, 1992. On the Born-Oppenheimer expansion for polyatomic molecules. Commun. Math. Phys., pp: 607-639.
- 13. Briet, P., J.M. Combs and P. Duclos, 1987. On the localisation of resonances for Shrodinger operators in the semiclassical limit II. Comm. Part. Diff. Equ., 12: 201-222.