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Abstract: The selection of an optimal time series decomposition’ technique 

is crucial for enhancing rainfall prediction by using sophisticated methods as 

deep learning hybrid approaches. This study evaluates the effectiveness of 

five times series decomposition techniques in analyzing monthly rainfall 

datasets across Guinea geographical regions (Lower-Guinea (Boké, 

Conakry, Kindia), Middle-Guinea (Labé, Mamou), Upper-Guinea (Faranah, 

Kankan) and Forest-Guinea (Nzérékoré)) and identifies the most suitable 

technique for each region. The decomposition techniques considered are (a) 

Variational Mode Decomposition (VMD), (b) Ensemble Empirical Mode 

Decomposition (EEMD), (c) Complete Ensemble Empirical Mode 

Decomposition (CEEMD), (d) Complete Ensemble Empirical Mode 

Decomposition Adaptive Noise (CEEMDAN) and (e) Improved Complete 

EEMD with Adaptive Noise (ICEEMDAN) techniques. These techniques 

were chosen due to their widespread use and high accuracy. Their 

performance was judged using Kolmogorov-Smirnov Statistic (DKS), Root 

Mean Square Error (RMSE), Mean Square Error (MSE) and Mean Absolute 

Error (MAE). The results demonstrate that ICEEMDAN and CEEMDAN 

techniques showed the lowest RMSE, MAE, and MSE values compared to 

the others ones at all of the studied sites, indicating highest decomposition 

performances. However, ICEEMDAN consistently exhibited smaller DKS 

values compared to CEEMDAN, except in the site of Faranah and Nzérékoré. 

Therefore, ICEEMDAN is recommended as the most suitable technique for 

most studied stations, while CEEMDAN is preferable for Faranah and 

Nzérékoré. The analysis also revealed that monthly rainfall trends during the 

study period were predominantly nonlinear across all the sites. These 

nonlinear trends exhibited complex patterns such as alternating increases, 

suggesting significant climatic shift around the 2010s. The results highlight 

the limitations of traditional methods that assume linearity in rainfall trend 

detection, which may yield inaccurate conclusions. The finding provides 

valuable insights for improving rainfall forecasting in Guinea and enhancing 

our understanding of rainfall temporal variations in the period from 1991 to 

2020. 

 

Keywords: Rainfall, Guinea, Decomposition, VMD, EEMD, CEEMD, 

CEEMDAN, ICEEMDAN 

 

Introduction 

Rainfall time series forecasting is crucial for managing 

and planning water reserves and improving agricultural 

productivity (Wani et al., 2024; Zhou et al., 2021; Xu et al., 

2022). Unfortunately, rainfall prediction is a complex and 

challenging task due to the intrinsic characteristics of 

rainfall, such as its extreme variability, greater 

randomness and multiscale properties (Jiao and He, 2024; 

Agbazo et al., 2023; Yang et al., 2024; Ling et al., 2023). 
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Therefore, enhancing the precision of rainfall forecasting 

has been a main domain of research (Zhang et al., 2025), 

mainly in countries characterized by different climatic 

regions and affected by changing climate. 

Nowadays, performing rainfall predicting with Machine 

Learning (ML) and Deep Learning (DL) algorithms has 

received particular attention by researchers world-wide 

(Ali et al., 2020; Wani et al., 2024; Wang et al., 2021; 

Huang et al., 2022), but not yet spread in Guinea (West 

Africa). These techniques have revealed notable potential in 

rainfall forecasting (Zhang et al., 2025; Poongadan and 

Lineesh, 2024; Ali et al., 2020; Adarsh and Reddy, 2018; 

2021). However, due to the intrinsic physical mechanisms 

characterizing rainfall, these algorithms present certain 

limitations in rainfall forecasting, affecting considerably 

forecasting accuracy (Sánchez-Monedero et al., 2014; Ali 

et al., 2018). Indeed, it is argued in many literatures, that due 

to the nonlinearity, nonstationarity and multiscale properties 

of rainfall time series, the accuracy of forecasting is greatly 

reduced when individual ML or DL algorithms are used 

(Huang et al., 2022; Sánchez-Monedero et al., 2014). Due to 

the naturally occurring nonlinearity, nonstationarity, and 

multiscale properties inherent in rainfall time series, 

achieving high forecasting accuracy using only a Machine 

Learning (ML) or Deep Learning (DL) algorithm is 

challenging (Huang et al. 2022; Sánchez-Monedero et al., 

2014; Adarsh and Reddy, 2018; 2021).  

To enhance the reliability of rainfall forecasting, it is 

necessary to approach the challenges of nonstationarity 

and nonlinearity challenges faced by ML and DL 

forecasting algorithms (Adarsh and Reddy, 2021). To this 

end, numerous studies have recommended the use of the 

decomposition-based hybrid models which, by coupling 

ML or DL algorithm, can significantly improve rainfall 

forecasting accuracy (Adarsh and Reddy, 2018; 2021; 

Khan et al., 2020; Danandeh, 2021).  

In literature, the commonly used decomposition 

techniques for breaking down rainfall data into a series of 

periodic terms and components before applying ML and DL 

algorithms include Wavelet Analysis (WA) (Pati et al., 

1993); EMD (Huang et al., 1998); EEMD (Wu et al., 2009c); 

CEEMD (Torres et al., 2011); CEEMDAN (Torres et al., 

2011; Colominas et al., 2012); ICEEMDAN (Colominas 

et al., 2014) and VMD (Dragomiretskiy and Zosso, 2014; 

Zhang et al., 2023). Among the aforementioned techniques, 

the WA approach is less effective and has received less 

attention in rainfall forecast studies because the mother 

wavelets and decomposition level should be predetermined 

before (Wu et al., 2009a-b; Rezaiy and Shabri, 2024). 

Moreover, WA technique is more suitable for nonstationary 

and linear data processing (Wu et al., 2009a-b). 

Several authors have combined decomposition-based 

hybrid models to enhance rainfall forecasting. Notable 

examples include: The combination of Wavelet Analysis 

(WA) and Artificial Neural Network (ANN) (Adamowski 

and Sun, 2010; Seo et al., 2015); EMD or VMD with long 

Short-Term Memory (LSTM) (Huang et al., 2022); 

CEEMD and Random Forest (RF) (Ali et al., 2020); 

CEEMD and LSTM (Jiang, 2023); EEMD and LSTM 

(Yang et al., 2021); EEMD and ANN (Johny et al., 2020); 

EMD and ANN (Iyengar and Raghu, 2005; Tan et al., 

2018) ; CEEMDAN and bi-directional long Short-term 

memory neural network (BiLSTM) (Zhang et al., 2023); 

VMD and BiLSTM (Jiao and He, 2024); ICEEMDAN and 

LSTM (Yang et al., 2024; Poongadan and Lineesh 2024); 

CEEMDAN and Extreme Learning Machine (ELM) 

(Zhang et al., 2022); ICEEMDAN and ANN (Johny et al., 

2020), among others. The results of these studies indicate 

that coupling ML or DL algorithm with data decomposition 

techniques significantly improve rainfall time series 

forecasting compared to using ML or DL algorithms alone. 

However, the performance and predictive capabilities of 

these hybrid models are thoroughly relying on the 

effectiveness of the chosen time series decomposition 

technique, which varies based on climatic conditions and 

geographical regions. Therefore, selecting the most suitable 

decomposition technique is crucial for enhancing rainfall 

forecasting accuracy with ML and DL algorithms. 

Guinea Republic is a country in West Africa, 

characterized by four geographical regions and is 

significantly affected by climate change effects. 

Agriculture, which is predominantly rainfed and accounts 

for approximately 22 % of the national GDP and serves as 

a primary economic activity for 70 % of Guineans (USAID, 

2018). There was a gap in research conducted previously in 

Guinea using hybrid models for rainfall forecasting. 

Additionally, there is a deficiency of research investigating 

on time series decomposition techniques across the 

country's different geographical regions. Given that, the 

choice of the best time series decomposition techniques in 

each geographical region is crucial for improving rainfall 

forecasting. There is a pressing need for studies comparing 

the effectiveness of time series decomposition techniques 

across Guinea geographical regions. Therefore, this 

preliminary study aims to measure and compare the 

achievement of VMD, EEMD, CEEMD, CEEMDAN and 

ICEEMDAN techniques to identify the most effective 

technique for each administrative region of Guinea. 

Materials 

Study Area Description 

Guinea is situated in West Africa, between 7˚N and 

13˚N as latitudes, and 7˚W and 15˚W longitudes (Figure 

1a). The country predominantly experiences a tropical 

climate, with annual temperature ranging between 23°C 

and 29°C. The total amount of annual rainfall varies 

between 1,500 and 4,500 mm, following a pronounced 

south-to-north gradient: Decreasing from south and along 

the coast to the north and inland areas (Guinea, 2018; 
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USAID, 2018). Most of Guinea regions experience two 

distinct seasons per year: A long rainy season, from April 

to November, and a dry season from December to March 

(Guinea, 2018; USAID, 2018; World Bank, 2016; 2017). 

The country is subdivided into four geographical regions: 
 
1. The Lower-Guinea (LG) in the coastal region, 

characterized by greater temperature includes the 

stations of Boké, Conakry and Kindia 

2. The Middle-Guinea (MG), characterized by the Fouta 

Djallon highlands, it encompasses the stations of 

Labé and Mamou 

3. The Upper-Guinea (UG) situated in the north of the 

country includes stations in Faranah and Kankan 

4. The Forest-Guinea (FG) located in the southeastern 

part of Guinea, includes the station of Nzérékoré 
 

The climate at the Upper Guinea is similar to Sahelian 

climate, with greater temperature ranges and a longer dry 

season (December-May), and annual rainfall ranging 

between 1.200 mm in the north to 1.600 mm in the south. 

In contrast, the coastal and southern (or forest) regions of 

Guinea has a monsoon climate with a shorter dry season 

and are typified by a lengthy rainy season (seven to nine 

months) and smaller temperature variations than the 

interior (Kante et al., 2020; 2019; Guinea, 2018; USAID, 

2018; World Bank, 2016; 2017). 

Data Description 

For this study, monthly rainfall time series for the 

1991-2020 period were used. The dataset was provided by 

the Guinean National Meteorological Service and they 

were obtained from eight synoptic stations distributed 

across Guinea (Figure 1b). 
 

 
 
Fig. 1: (a) Map Illustrating the Guinea’s Geographic Location 

within Africa. (b) Geographical cities to the East, West, 

North and South of the overall regional boundary of 

study area. These geographical cities are classified into 

four geophysical regions as follows: Lower-Guinea 

(Boké, Conakry, Kindia), Middle-Guinea 

(Labé,Mamou), Upper-Guinea (Faranah, Kankan) and 

Forest-Guinea (Nzérékoré) 

Table 1 shows statistics of rainfall for the studied 

synoptic stations. From this table it can be noted that 

during the studied period: The mean (maximum) rainfall 

is weakest for Kankan (Nzérékoré) and highest for 

Conakry (Conakry). The standard deviatsion is weakest 

for Nzérékoré and highest for Conakry. The skewness is 

positive for all stations, however, the highest skewness is 

observed for Faranah, while the lowest is for Nzérékoré. 

These findings indicate that Nzérékoré experiences a 

more symmetrical rainfall distribution with moderate and 

consistent patterns, whereas Faranah exhibits an 

asymmetric distribution with a tendency toward more 

extreme rainfall variations. The kurtosis values for Boké, 

Conakry, Faranah and Kankan are greater than 3, 

indicating that their distributions are leptokurtic. 

However, stations at Mamou, Kindia, Labé, Nzérékoré 

have kurtosis values less than 3, meaning, their 

distributions are platykurtic. The smallest kurtosis value 

is observed for Kindia, while the largest is Faranah. 

Overall, mean rainfall values arranging from 121 to 311 

mm exemplify the substantial diversity in rainfall levels 

over Guinea. 

Methods 

Ensemble Empirical Mode Decomposition (EEMD) 

Algorithm 

For a given observed series y(t), the EEMD steps are 

as follows (Wu, 2009): 

 

Step 1: Generate a new rainfall dataset 𝑥𝑖(𝑡): 

 

𝑥𝑖(𝑡) = 𝑦(𝑡) + 𝜂𝑖(𝑡), i = 1, 2, … , 𝑚  (1) 

 

Where 𝜂𝑖(𝑡)  is a Gaussian white noise (zero-mean 

unit-variance white Gaussian noise) and m (usually set at 

1,000) is the number of realizations of Gaussian white 

noise: 

 

Step 2: Use EMD algorithm (Huang et al., 1998) to 

completely decompose each 𝑥𝑖(𝑡): 

 

𝑥𝑖(𝑡) = ∑ 𝐼𝑀𝐹𝑖𝑘(𝑡) + 𝑟𝑖(𝑡)𝑛
𝑘=1   (2) 

 
Table 1: Descriptive Statistics of the Study Synoptic Stations 

Study 

stations 

Climatological statistics (1991-2020) 

Mean 

(mm) 

Max 

(mm) 

Std 

(mm) 

Skew 

(mm) 

Kurt 

(mm) 

Boké 192.24 1168.00 234.28 1.08 3.66 

Conakry 310.82 1677.00 422.04 1.40 3.90 

Kindia 168.87 636.30 175.82 0.74 2.41 

Labé 131.55 635.00 143.82 0.88 2.88 

Mamou 147.70 729.30 153.54 0.86 2.98 

Faranah 136.97 1528.30 167.27 3.03 22.03 

Kankan 120.92 612.500 134.94 1.10 3.63 

Nzérékoré 158.26 539.60 116.84 0.50 2.62 
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Where 𝐼𝑀𝐹𝑖𝑘(𝑡)  and 𝑟𝑖(𝑡)  denote the ith Intrinsic 

Mode Function (IMF) component and residue from 

𝑥𝑖(𝑡) the EMD technique. Where n indicates the number 

of IMF: 

 

Step 3: Finally, take the ensemble average of IMFs 

components and residue obtained from 

𝑥𝑖(𝑡) with EMD technique: 

 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑘 =

1

𝑚
∑ 𝐼𝑀𝐹𝑖𝑘(𝑡)𝑚

𝑖=1  and 𝑅(𝑡) =
1

𝑚
∑ 𝑟𝑖

𝑚
𝑖 (𝑡)  (3) 

 

Where 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑘(𝑡)  and 𝑅(𝑡)  are respectively the kth 

mode and residue (nonlinear trend) of y(t). Thus, the 

observed series is formulated as: 

 

𝑦(𝑡) = ∑ 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑘

𝑛
𝑘=1 (𝑡) + 𝑅(𝑡) (4) 

 

Complete Ensemble Empirical Mode Decomposition 

(CEEMD) Algorithm 

According to Li et al. (2023); Ali et al. (2020); Torres 

et al. (2011), for a given observed rainfall sets y(t), the 

computation steps of CEEMD are: 
 
Step 1: Deduce the first decomposed component 

applying EMD to (y(t) + white noise) 

Step 2: Rehearse the decomposition and append white 

noise of different realizations 

Step 3: Calculate the ensemble mean to establish the first 

IMF1: 

 

𝐼𝑀𝐹1(𝑡) =
1

𝑁
∑ 𝐸1

𝑁
𝑖=1 [𝑦(𝑡) + 𝜎𝑤𝑖] (5) 

 

Where 𝜎 is a ratio coefficient, N is the realizations’ 

number, 𝑤𝑖(𝑡) denotes the different white noise, and 𝐸1 

represents generating ith IMF component: 

 

Step 4: Compute the prime residue: 

 

𝑟1(𝑡) = 𝑦(𝑡) − 𝐼𝑀𝐹1(𝑡) (6) 

 

Step 5: Compute the second IMF component IMF2: 

 

𝐼𝑀𝐹2(𝑡) =
1

𝑁
∑ 𝐸1(𝑟1(𝑡) + 𝜎𝐸1[𝑤𝑖(𝑡)])𝑁

𝑖=1  (7) 

 
Step 6: Replicate the aforementioned steps to get the 

(n+1)th IMF component, IMFn+1(t): 
 

𝐼𝑀𝐹𝑛+1(𝑡) =
1

𝑁
∑ 𝐸1(𝑟𝑛(𝑡) + 𝜎𝐸𝑛[𝑤𝑖(𝑡)])𝑁

𝑖=1  (8) 

 
𝑦(𝑡) = ∑ 𝐼𝑀𝐹𝑖

𝑁
𝑖=1 (𝑡) + 𝑅(𝑡) (9) 

 

𝐼𝑀𝐹𝑖  and 𝑅(𝑡)  are respectively the ith mode and 

residue (nonlinear trend) of y(t). 

Complete EEMD With Adaptive Noise (CEEMDAN) 

Algorithm 

According to (Torres et al., 2011; Colominas et al., 

2012; Antico et al., 2014) for a given observed rainfall 

sets y(t), the computation steps of CEEMDAN are: 

 

Step 1: Produce a new rainfall set 𝑥𝑖(𝑡): 
 
𝑥𝑖(𝑡) = 𝑦(𝑡) + 𝛽0𝜂𝑖(𝑡) (10) 

 

Where 𝜂𝑖(𝑡) is the white Gaussian noise realization (i 

= 1, 2, …, m) with the unit-variance and zero-mean; 𝛽0 

(𝛽0 > 0 ) represents the noise level: 

 

Step 2: Decompose entirely 𝑥𝑖(𝑡)  m times through the 

EMD technique to get the first intrinsic mode 

function 𝐼𝑀𝐹𝑖1(𝑡) (i=1, 2, …, m) and determine 

the first IMF of CEEMDAN and the initial 

residual 𝑅1(𝑡) as follows: 

 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅
1 =

1

𝑚
∑ 𝐼𝑀𝐹𝑖1(𝑡)𝑚

𝑖=1   (11) 

 

𝑅1(𝑡) = 𝑦(𝑡) − 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
1(𝑡) (12) 

 

Step 3: Generate a new rainfall set 𝑅𝑖1(𝑡): 
 
𝑅𝑖1(𝑡) = 𝑅1(𝑡) + 𝛽1𝐸1(𝜂𝑖(𝑡)) (13)  
 

Where the operator 𝐸𝑘(⋅)  denotes the kth IMF 

decomposed by EMD: 
 

Step 4: Decompose 𝑅𝑖1(𝑡)  l times through the EMD 

technique to get the second IMF ( 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
2 ) of 

CEEMDAN and the initial residual 𝑅2(𝑡)  as 

follows: 
 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅
2 =

1

𝑚
∑ 𝐸1(𝑅1(𝑡) + 𝛽1𝐸1(𝜂𝑖(𝑡)))𝑚

𝑖=1   (14) 

 

𝑅2(𝑡) = 𝑅1(𝑡) − 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
2(𝑡) (15) 

 

Step 5: Replicate Step 3 and 4, therefore, the k-th (k = 2, 

3, …, n) IMF and residual are summarized as: 
 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑘 =

1

𝑚
∑ 𝐸1(𝑅𝑘−1(𝑡) + 𝛽𝑘−1𝐸𝑘−1(𝜂𝑖(𝑡)))𝑚

𝑖=1   (16) 

 
𝑅𝑘(𝑡) = 𝑅𝑘−1(𝑡) − 𝐼𝑀𝐹̅̅ ̅̅ ̅̅

𝑘(𝑡)  (17) 
 

Where 𝛽𝑘 is the level of added white noise. The value 

of 𝛽𝑘 vary usually between 0.1 and 0.3 (Colominas et al. 

2012): 
 
Step 6: Eventually, move to Step 5 for the next k up to 

the obtained residual cannot continue the 

decomposition by EMD. At that time, the 

ultimate residue satisfies the following equation: 
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𝑅(𝑡) = 𝑦(𝑡) − ∑ 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑘

𝑛
𝑘 (𝑡)  (18) 

 

n is the entire number of modes. Therefore, the 

observed series y(t) can be written as: 
 
𝑦(𝑡) = ∑ 𝐼𝑀𝐹̅̅ ̅̅ ̅̅

𝑘
𝑛
𝑘 (𝑡) + 𝑅(𝑡)  (19) 

 
Where 𝐼𝑀𝐹̅̅ ̅̅ ̅̅

𝑘(𝑡)  and 𝑅 (t) represent respectively the 

different periodic characteristics and the nonlinear trend. 

Improved Complete EEMD WITH Adaptive Noise 

(ICEEMDAN) Algorithm 

According to Colominas et al. (2014) for a given 

observed rainfall sets y(t), the computation steps of 

ICEEMDAN are: 
 
Step 1: Produce a new rainfall set 𝑥𝑖(𝑡): 
 
𝑥𝑖(𝑡) = 𝑦(𝑡) + 𝛽0𝐸1(𝜂𝑖(𝑡) (20) 
 

Where 𝜂𝑖(𝑡) denotes the ith white Gaussian noise added: 
 
Step 2: Decompose completely 𝑥𝑖(𝑡)  m times with 

EMD technique to get IMF1 of the improved 

CEEMDAN: 
 

𝑅1(𝑡) =
1

𝑚
∑ 𝑀(𝑥𝑖(𝑡))𝑚

𝑖=1  (21) 
 
 𝐼𝑀𝐹̃1(𝑡) = 𝑦(𝑡) − 𝑅1(𝑡) (22) 
 
Step 3: Determine IMF2 and residual of the improved 

CEEMDAN as follows: 
 
𝐼𝑀𝐹̃2(𝑡) = 𝑅1(𝑡) − 𝑅2(𝑡)  (23) 
 

𝑅2(𝑡) =
1

𝑚
∑ 𝑀(𝑅1(𝑡) + 𝛽1𝐸2(𝜂𝑖(𝑡)))𝑚

𝑖=1   (24) 
 
Step 4: Determine IMFk of the improved CEEMDAN: 
 
𝐼𝑀𝐹̃𝑘(𝑡) = 𝑅𝑘−1(𝑡) − 𝑅𝑘(𝑡)  (25) 
 

𝑅𝑘(𝑡) =
1

𝑚
∑ 𝑀(𝑅𝑘−1(𝑡) + 𝛽k−1𝐸𝑘(𝜂𝑖(𝑡)))𝑚

𝑖=1  (26) 
 
Step 5: Eventually, move to Step 4 for the next k, up to 

the turn off criterion is attained 

 

Thus, y(t) can be expressed as: 

 

𝑦(𝑡) = ∑ 𝐼𝑀𝐹̃𝑘
𝑛
𝑘 (𝑡) + 𝑅(𝑡) (27) 

 

𝑅(t) is the real nonlinear trend.  

In this study, m = 1000, and 𝛽k = 0.2  in order to 

compare EEMD, CEEMD, ICEEMDAN and CEEMDAN 

results. 

Variational Mode Decomposition (VMD) 

According to Dragomiretskiy and Zosso (2014) for a 

given observed rainfall sets y(t), the computation steps of 

VMD are: 

Step 1: Constructing a variational problem as follows: 

 

{
min

{𝑢𝑘},{𝜔𝑘}
{∑ ‖𝜕𝑡 [(𝛿(𝑡) +

𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝑤𝑘

𝑡
‖

2

2
𝐾
𝑘 }

∑ 𝑢𝑘
𝐾
𝑘=1 (𝑡) = 𝑦(𝑡)

  (28) 

 

Where: 𝑗 = √−1 ; 𝛿  is Dirac distribution; ∗  denotes 

convolution operator; 𝑦(𝑡)  denotes sum of the 

components of input series; K is the number of IMFs; 
{𝑢𝑘(𝑡)} ∶= {𝑢1, 𝑢2, ⋯ , 𝑢𝑛}  the set of all modes ; 
{𝜔𝑘(𝑡)} ∶= {𝜔1, 𝜔2, ⋯ , 𝜔𝑛} is the of central frequencies; 

𝜕𝑡 denotes partial derivative: 

 

Step 2: Solving the variational problem as follows: 

 

ℒ({𝑢𝑘}, {𝜔𝑘}, 𝜆) ∶= 𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +𝐾
𝑘=1

𝑗

𝜋𝑡
) 𝑢𝑘(𝑡)] 𝑒−𝑗𝑤𝑘

𝑡
‖

2

2
+ ‖𝑦(𝑡) − ∑ 𝑢𝑘(𝑡)𝐾

𝑘 ‖
2

2
+ 〈𝜆(𝑡), 𝑦(𝑡) −

∑ 𝑢𝑘(𝑡)𝐾
𝑘 〉  (29) 

 

Where 𝛼  is the quadratic penalty factor; ℒ  is a 

Lagrangian augmentation term, and 𝜆(𝑡) is the Lagrange 

multiplier. 𝜆 ; 𝜔𝑘 and 𝑢𝑘(𝜔) are iteratively updated as: 

 

𝑢𝑘
𝑛+1(𝜔) =

𝑦(𝜔)−∑ 𝑢𝑖(𝜔)+
𝜆(𝜔)

2
𝐾
𝑖≠𝑘

1+2𝛼(𝜔−𝜔𝑘)2   (30) 

 

𝜔𝑘
𝑛+1 =

∫ 𝜔|𝑢𝑘(𝜔)|2𝑑𝜔
∞

0

∫ |𝑢𝑘(𝜔)|2𝑑𝜔
∞

0

  (31) 

 

𝜆𝑛+1(𝜔) = 𝜆𝑛(𝜔) + 𝜂(𝑦(𝜔) − ∑ 𝑢𝑘
𝑛+1(𝜔)𝐾

𝑘=1 ) (32) 

 

Where 𝜂 denotes the iteration counter. 

The stopping or convergence criterion for the 

iterations of these steps is defined as: 
 
∑ ‖𝑢𝑘

𝑛+1−𝑢𝑘
𝑛‖

2

2
𝑘

‖𝑢𝑘
𝑛‖

2

2 < 𝜀 (33) 

 
Where ε represents the convergence threshold or 

tolerance. 

Variance Contribution Rate and Periodic Cycles 

According to Guo et al. (2016); Bai et al. (2017); 

Agbazo et al. (2021), the Variance contribution rate 

(VCR) is determined as: 
 

𝑉𝐶𝑅𝐼𝑀𝐹𝑘
= 100 ∗

𝜎𝐼𝑀𝐹𝑘
2

∑ 𝜎𝐼𝑀𝐹𝑘
2 +𝜎𝑇𝑟𝑒𝑛𝑑

2𝑛
𝑘=1

  (34)  

 

𝑉𝐶𝑅𝑇𝑟𝑒𝑛𝑑 = 100 ∗
𝜎𝑇𝑟𝑒𝑛𝑑

2

∑ 𝜎𝐼𝑀𝐹𝑘
2 +𝜎𝑇𝑟𝑒𝑛𝑑

2𝑛
𝑘=1

  (35)  

 

Where the operator 𝜎(.)
2  denotes variance sign, IMF 

and Trend represent respectively the intrinsic mode 

function and the nonlinear trend.  
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Furthermore, according to Wu and Huang (2004; 

2005) the mean period (𝑇𝑘) of the kth IMF is estimated 

through: 

 

𝑇𝑘 =
𝐿

𝑁𝑃𝑘
 (36) 

 

Where L represents the size of IMF time series and 

where 𝑁𝑃𝑘 represents the number of local maxima in IMF 

set. 

Performance Evaluation Criteria of Decomposition 

Techniques 

We have used four statistical metrics:  

 

(a) Root Mean Square Error (RMSE) (Gentilucci et al., 

2019) 

(b) Mean Absolute Error (MAE) (Wang and Lu, 2018) 

(c) Mean Square Error (MSE) (Luo et al., 2022) 

(d) Statistic of Kolmogorov-Smirnov (DKS) (Wilks, 

2006) to identify the best rainfall decomposition 

techniques between VMD, EEMD, CEEMD, 

CEEMDAN and ICEEMDAN for each region. 

Rainfall data reconstruction was performed by 

summing IMF components and the overall trend 

component obtained by each technique. RMSE, 

MAE and MSE indicate the magnitude of errors 

between reconstructed and observed rainfall. 

RMSE, MAE, MSE values are 0, for the best 

reconstruction accuracy technique 

 

The mathematical expressions of RMSE, MSE and 

MAE are (Gentilucci et al., 2019; Wang and Lu, 2018; Luo 

et al., 2022): 

 

𝑅𝑀𝑆𝐸 = (
1

𝑁
∑ (𝑃𝑟𝑒𝑐(𝑖) − 𝑃𝑜𝑏𝑠(𝑖))2𝑁

𝑖=1 )
1

2⁄
  (37) 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑃𝑟𝑒𝑐(𝑖) − 𝑃𝑜𝑏𝑠(𝑖)|𝑁

𝑖=1   (38) 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑃𝑟𝑒𝑐(𝑖) − 𝑃𝑜𝑏𝑠(𝑖))2𝑁

𝑖=1   (39) 

 

𝑃𝑟𝑒𝑐  and 𝑃𝑜𝑏𝑠  are reconstructed and observed rainfall 

set, respectively; N is the length. 

According to Wilks (2006), the mathematical 

expression of DKS is: 

 

𝐷𝐾𝑆 = 𝑠𝑢𝑝𝑥|𝐹𝑎(𝑥) − 𝐹𝑏(𝑥)|  (40) 

 

Where 𝐹𝑎(𝑥)  and 𝐹𝑏(𝑥)  represent respectively 

cumulative distribution functions of dataset A and B; 

𝑠𝑢𝑝𝑥 stands for supremum. 

Results and Discussion 

Figure 2 displays the boxplot of the error made during 

the decomposition of the series observed by the 

ICEEMDAN, CEEMDAN, CEEMD, EEMD and VMD 

techniques. It can be noted that, except for EEMD and 

VMD techniques, the minimum, median, 25th and 75th 

percentiles and the maximum values of the error are close 

to zero in all the studied stations. Thus, among the studied 

techniques, the reconstructed rainfall data obtained from 

EEMD and VMD techniques present a huge error 

compared to the observed rainfall data in all the studied 

stations. However, the error with VMD is larger than 

EEMD ones, and the error with EEMD technique is 

smallest for Nzérékoré and largest for Conakry. Among 

the studied techniques, VMD is not suitable. 

These findings demonstrate that compared to EEMD 

and VMD, CEEMD, CEEMDAN and ICEEMDAN 

techniques are systematically more adapted than EEMD 

and VMD for monthly rainfall decomposition in Guinea. 

Figures 3, 4 and 5 present the performances of the 

decomposition techniques. It is evident from these figures 

that among all the studied techniques, VMD and EEMD 

have the largest RMSE, MAE and MSE values at all the 

studied stations, indicating that EEMD and VMD 

techniques, especially VMD is not suitable for 

decomposing monthly rainfall into a limited number of 

oscillating components, confirming the above results. 

Furthermore, according to the comparison between the 

ICEEMDAN, CEEMDAN and CEEMD techniques, it is 

noted that the CEEMD technique consistently 

demonstrated higher RMSE, MAE and MSE across all 

stations, which means that CEEMD is less suitable. On 

comparing the RMSE, MSE, and MAE values of 

ICEEMDAN and CEEMDAN techniques, it is observed 

that the two techniques are relatively close to one another. 
 

 
 
Fig. 2: Box plot of the difference between the observed Rainfall 

data and the reconstructed rainfall data for ICEEMDAN, 

CEEMDAN, CEEMD, EEMD and VMD techniques 
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Fig. 3: Root mean square error (rmse) for the reconstruction 

accuracy of rainfall data using ICEEMDAN, 

CEEMDAN, CEEMD, EEMD and VMD techniques 
 

 
 
Fig. 4: Mean absolute error (mse) for the reconstruction 

accuracy of rainfall data using ICEEMDAN, 

CEEMDAN, CEEMD, EEMD and VMD techniques 
 

Therefore, based on the RMSE, MSE and MAE 

criteria, it seems that these two techniques exhibit 

comparable effectiveness for decomposing monthly 

rainfall and at this step, it is arduous to distinguish the 

most appropriate technique between them for the studied 

stations. 

The computed values of the Kolmogorov-Smirnov 

statistic (DKS) for each technique are presented in Figure 

6. ICEEMDAN and CEEMDAN techniques have lower 

DKS values than the CEEMD and EEMD, suggesting and 

confirming that ICEEMDAN and CEEMDAN perform 

better than the other two techniques. However, they 

exhibited varying degrees of effectiveness across the 

studied stations. ICEEMDAN quasi-systematically shows 

lower DKS value compared to CEEMDAN in all the 

studied stations, except for Faranah and Nzérékoré. 

Therefore, ICEEMDAN is the suitable technique for 

decomposing monthly rainfall into a limited number of 

oscillating components in most of the studied stations, while 

CEEMDAN decomposing performance is significantly 

better than ICEEMDAN for Faranah and Nzérékoré. 

 

 

 

Fig. 5: Mean Square Error (MAE) for the Reconstruction 

Accuracy of Rainfall Data Using ICEEMDAN, 

CEEMDAN, CEEMD, EEMD and VMD Techniques 

 

 

 

Fig. 6: Spatial Distribution of DKS Statistic Between the 

Observed and Reconstructed Rainfall Data Using 

ICEEMDAN, CEEMDAN, CEEMD and EEMD 

Techniques 
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Figure 7 presents the Variance Contribution Rate 

(VCR), which evaluates the contribution of each IMF to 

the monthly rainfall variability. The results show that 

ICEEMDAN decomposes the monthly rainfall time series 

into six (6) IMF components (IMF1-6) and one trend 

component at most studied stations for 1991 to 2020, 

except for Kindia and Labé, where the series is 

decomposed into five IMF components (IMF1-5) and one 

trend component. This finding indicates that the variability 

in monthly rainfall time series is less complex for Kindia and 

Labé compared to the remaining stations. The underlying 

reasons for this difference were not investigated. 

The variance rate indicates that, at most of the studied 

stations, except, for Kindia, Labé and Nzérékoré, IMF6 

emerged as the dominant component, contributing 60 to 

80% of the overall variability in monthly rainfall time 

series depending on the stations. IMF6 was followed by 

IMF1, with a contribution rate of 8 to 15% depending on 

the stations. However, for Kindia, Labé and Nzérékoré, 

the overall trend component contributes the most for 

about 40% to 80%, indicating a nonlinear change in the 

monthly rainfall from 1991-2020. It is followed by IMF1 

and IMF5 which contributes for 10% to 20 and 5 to 10% 

respectively. This result implies that at these stations, the 

overall trend component represents a significant portion 

of the monthly rainfall time series variability, suggesting 

that these stations may be more impacted by climate 

change effects. 

Figure 8 illustrates the periodic cycles of the monthly 

rainfall components. The results indicate that inter-month 

scales, inter-annual scales, inter-decadal scales, and 

multi-decadal scales characterized changes in monthly 

rainfall during the 1991-2020 period, at all of the studied 

stations. By combining these findings with those related 

to the contribution of the IMF components (Figure 7), it 

can be deduced that, except, for Kindia, Labé and 

Nzérékoré, inter-decadal, the inter-monthly and inter-

annual fluctuations are the primary drivers of monthly 

rainfall time series variability depending on the station.  
 

 
 
Fig. 7: Variance Contribution Rate (VCR) of IMFs and Trend 

Component Extracted Using ICEEMDAN Technique 

Figure 9 presents the long-term trends extracted. The 

ICEEMDAN results clearly show that the overall trend in 

the monthly rainfall time series during the 1991-2020 

period for all of the studied stations is nonlinear. Thus, the 

use of standard trend identification techniques, such as the 

conventional linear regression technique, that assume a 

linear fit to the overall trend of rainfall monthly time 

series could lead to inaccurate interpretations in all of the 

studied stations. 

 

 
 
Fig. 8: Mean Period of IMFs Extracted Using the ICEEMDAN 

Technique 

 

 
 
Fig. 9: Intrinsic long-term trends of the rainfall variation 

obtained from the ICEEMDAN technique during 1991-

2020 period in Guinea 
 

The nonlinear trends revealed by ICEEMDAN 

technique have a parabolic shape with a downward 

concavity, with maximum values observed around 2010. 

For all of the stations, the nonlinear trend in the monthly 
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rainfall time series during the 1991-2020 period exhibits 

an increasing-decreasing pattern. This trend morphology 

consists of two distinct phases: The first phase (1991-

2010) is the most humid, characterized by a slightly 

increasing trend in monthly rainfall time series. 

The second zone (2010-2020) is the driest or less 

humid compared to the first ones, marked by a rainfall 

deficit and characterized by a decreasing trend. 

Qualitatively, these findings align with results reported in 

West African countries, such as Burkina-Faso (Yanogo 

and Yaméogo, 2023). Overall, the monthly rainfall in 

Guinea for 1991-2020 has a nonlinear change, increases 

before the late 2010s and decreases after the late 2010s. 

Thus, the morphology of the nonlinear trend obtained 

using ICEEMDAN at the stations aligns with previous 

research conducted in different West African regions. 

These studies, identified shift in rainfall trends around 

2010s, with a positive trend 1990 and 2010, during the 

1982-2013 period (Bodian, 2014; Descroix et al., 2015; 

Vischel et al., 2015; Tano et al., 2023; Yanogo and 

Yaméogo, 2023). Consequently, trend detection using 

ICEEMDAN techniques presents a major advancement 

over linear trend detection and is strongly recommended. 

Overall, two key reasons confirm the capability of the 

ICEEMDAN technique in detecting and analyzing the 

nonlinear trend in the studied region: Its ability to explain 

past results known in the literature through nonlinear 

trend morphology and the coincidence of past results with 

those revealed by the nonlinear trend pattern. 

The nonlinear trend detected in the monthly rainfall 

time series in Guinea aligns with previous studies (Xue et al., 

2013; Duan et al., 2019; Guan et al., 2022), which 

identified complex nonlinear changes accompanied by 

periodic variability in precipitation data in other parts of 

the world. 

Conclusion 

The performances of five most popular decomposition 

techniques in multiscale decomposing of monthly rainfall 

datasets across Guinea geographical regions during 1991-
2020 period were presented in this study. The techniques 

were tested against four evaluation criteria. ICEEMDAN 
and CEEMDAN fulfilled three of the evaluation criteria 

(RMSE, MAE, and MSE) in all of the studied stations. 
Among the considered techniques, it showed the lowest 

RMSE, MAE and MSE, which are close to zero over 

ICEEMDAN and CEEMDAN techniques. Thus, 
ICEEMDAN and CEEMDAN outperformed other 

techniques. However, based on the RMSE, MSE and 
MAE criteria, ICEEMDAN and CEEMDAN showed 

similar performance for decomposing monthly rainfall in 

studied stations. Considering DKS values, ICEEMDAN 
outperformed CEEMDAN in most stations. However, 

CEEMDAN performs ICEEMDAN in Faranah and 
Nzérékoré. So, among the considered stations, 

ICEEMDAN emerged as the most efficient and suggested 

for decomposing monthly rainfall time series into a 

limited number of oscillating components without the 
need for predetermined basis functions in most of the 

studied stations, while CEEMDAN is recommended for 
Faranah and Nzérékoré ones. Between 1991 and 2020, the 

monthly rainfall time series exhibited significant long-

term nonlinear trends at nearly all stations studied, 
highlighting that linear trend techniques can lead to wrong 

conclusions about the impact of climate change. The 
nonlinear trends in monthly rainfall are characterized by 

increasing-decreasing trends, reflecting notable climatic 
shifts around the 2010s. 

These findings highlight our understanding of monthly 

rainfall trends, crucial for designing and implementing 

effective climate change resilience strategies in Guinea. 

These main results also have important implications for 

improving monthly rainfall forecasting with machine 

learning approaches in Guinea, which will be our future 

research topic. 
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