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performance was judged using Kolmogorov-Smirnov Statistic (DKS), Root
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Error (MAE). The results demonstrate that ICEEMDAN and CEEMDAN
techniques showed the lowest RMSE, MAE, and MSE values compared to
the others ones at all of the studied sites, indicating highest decomposition
performances. However, ICEEMDAN consistently exhibited smaller DKS
values compared to CEEMDAN, except in the site of Faranah and Nzérékor¢.
Therefore, ICEEMDAN is recommended as the most suitable technique for
most studied stations, while CEEMDAN is preferable for Faranah and
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the limitations of traditional methods that assume linearity in rainfall trend
detection, which may yield inaccurate conclusions. The finding provides
valuable insights for improving rainfall forecasting in Guinea and enhancing
our understanding of rainfall temporal variations in the period from 1991 to
2020.
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Introduction 2022). Unfortunately, rainfall prediction is a complex and
challenging task due to the intrinsic characteristics of

Rainfall time series forecasting is crucial for managing rainfall, such as its extreme variability, greater
and planning water reserves and improving agricultural randomness and multiscale properties (Jiao and He, 2024;

productivity (Wani et al., 2024; Zhou et al., 2021; Xu et al., Agbazo et al., 2023; Yang et al., 2024; Ling et al., 2023).

y/ SCI ENC E © 2025 Noukpo Médard Agbazo, Oumar Keita, Alpha Oumar Baldé, Lonsenigb¢ Camara and Lancei Koivogui. This
/ P u b| ications open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.



Noukpo Médard Agbazo ef al. / American Journal of Applied Sciences 2025, Volume 22, 47.58

DOI: 10.3844/ajassp.2025.47.58

Therefore, enhancing the precision of rainfall forecasting
has been a main domain of research (Zhang et al., 2025),
mainly in countries characterized by different climatic
regions and affected by changing climate.

Nowadays, performing rainfall predicting with Machine
Learning (ML) and Deep Learning (DL) algorithms has
received particular attention by researchers world-wide
(Ali et al., 2020; Wani et al., 2024; Wang et al., 2021,
Huang et al., 2022), but not yet spread in Guinea (West
Africa). These techniques have revealed notable potential in
rainfall forecasting (Zhang et al., 2025; Poongadan and
Lineesh, 2024; Ali et al., 2020; Adarsh and Reddy, 2018;
2021). However, due to the intrinsic physical mechanisms
characterizing rainfall, these algorithms present certain
limitations in rainfall forecasting, affecting considerably
forecasting accuracy (Sanchez-Monedero ef al., 2014; Ali
et al.,2018). Indeed, it is argued in many literatures, that due
to the nonlinearity, nonstationarity and multiscale properties
of rainfall time series, the accuracy of forecasting is greatly
reduced when individual ML or DL algorithms are used
(Huang et al., 2022; Sanchez-Monedero et al., 2014). Due to
the naturally occurring nonlinearity, nonstationarity, and
multiscale properties inherent in rainfall time series,
achieving high forecasting accuracy using only a Machine
Learning (ML) or Deep Learning (DL) algorithm is
challenging (Huang ef al. 2022; Sanchez-Monedero et al.,
2014; Adarsh and Reddy, 2018; 2021).

To enhance the reliability of rainfall forecasting, it is
necessary to approach the challenges of nonstationarity
and nonlinearity challenges faced by ML and DL
forecasting algorithms (Adarsh and Reddy, 2021). To this
end, numerous studies have recommended the use of the
decomposition-based hybrid models which, by coupling
ML or DL algorithm, can significantly improve rainfall
forecasting accuracy (Adarsh and Reddy, 2018; 2021;
Khan et al., 2020; Danandeh, 2021).

In literature, the commonly used decomposition
techniques for breaking down rainfall data into a series of
periodic terms and components before applying ML and DL
algorithms include Wavelet Analysis (WA) (Pati et al.,
1993); EMD (Huang et al., 1998); EEMD (Wu et al., 2009c);
CEEMD (Torres et al., 2011); CEEMDAN (Torres et al.,
2011; Colominas et al., 2012); ICEEMDAN (Colominas
et al., 2014) and VMD (Dragomiretskiy and Zosso, 2014;
Zhang et al., 2023). Among the aforementioned techniques,
the WA approach is less effective and has received less
attention in rainfall forecast studies because the mother
wavelets and decomposition level should be predetermined
before (Wu et al., 2009a-b; Rezaiy and Shabri, 2024).
Moreover, WA technique is more suitable for nonstationary
and linear data processing (Wu et al., 2009a-b).

Several authors have combined decomposition-based
hybrid models to enhance rainfall forecasting. Notable
examples include: The combination of Wavelet Analysis
(WA) and Artificial Neural Network (ANN) (Adamowski
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and Sun, 2010; Seo et al., 2015); EMD or VMD with long
Short-Term Memory (LSTM) (Huang et al, 2022);
CEEMD and Random Forest (RF) (Ali et al., 2020);
CEEMD and LSTM (Jiang, 2023); EEMD and LSTM
(Yang et al., 2021); EEMD and ANN (Johny et al., 2020);
EMD and ANN (Iyengar and Raghu, 2005; Tan et al.,
2018) ; CEEMDAN and bi-directional long Short-term
memory neural network (BiLSTM) (Zhang et al., 2023);
VMD and BiLSTM (Jiao and He, 2024); ICEEMDAN and
LSTM (Yang et al., 2024; Poongadan and Lineesh 2024);
CEEMDAN and Extreme Learning Machine (ELM)
(Zhang et al., 2022); ICEEMDAN and ANN (Johny et al.,
2020), among others. The results of these studies indicate
that coupling ML or DL algorithm with data decomposition
techniques significantly improve rainfall time series
forecasting compared to using ML or DL algorithms alone.
However, the performance and predictive capabilities of
these hybrid models are thoroughly relying on the
effectiveness of the chosen time series decomposition
technique, which varies based on climatic conditions and
geographical regions. Therefore, selecting the most suitable
decomposition technique is crucial for enhancing rainfall
forecasting accuracy with ML and DL algorithms.

Guinea Republic is a country in West Affica,
characterized by four geographical regions and is
significantly affected by climate change effects.
Agriculture, which is predominantly rainfed and accounts
for approximately 22 % of the national GDP and serves as
a primary economic activity for 70 % of Guineans (USAID,
2018). There was a gap in research conducted previously in
Guinea using hybrid models for rainfall forecasting.
Additionally, there is a deficiency of research investigating
on time series decomposition techniques across the
country's different geographical regions. Given that, the
choice of the best time series decomposition techniques in
each geographical region is crucial for improving rainfall
forecasting. There is a pressing need for studies comparing
the effectiveness of time series decomposition techniques
across Guinea geographical regions. Therefore, this
preliminary study aims to measure and compare the
achievement of VMD, EEMD, CEEMD, CEEMDAN and
ICEEMDAN techniques to identify the most effective
technique for each administrative region of Guinea.

Materials
Study Area Description

Guinea is situated in West Africa, between 7°N and
13°N as latitudes, and 7°W and 15°W longitudes (Figure
la). The country predominantly experiences a tropical
climate, with annual temperature ranging between 23°C
and 29°C. The total amount of annual rainfall varies
between 1,500 and 4,500 mm, following a pronounced
south-to-north gradient: Decreasing from south and along
the coast to the north and inland areas (Guinea, 2018;
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USAID, 2018). Most of Guinea regions experience two
distinct seasons per year: A long rainy season, from April
to November, and a dry season from December to March
(Guinea, 2018; USAID, 2018; World Bank, 2016; 2017).
The country is subdivided into four geographical regions:

1. The Lower-Guinea (LG) in the coastal region,
characterized by greater temperature includes the
stations of Boké, Conakry and Kindia

The Middle-Guinea (MG), characterized by the Fouta
Djallon highlands, it encompasses the stations of
Labé and Mamou

3. The Upper-Guinea (UG) situated in the north of the
country includes stations in Faranah and Kankan
The Forest-Guinea (FG) located in the southeastern
part of Guinea, includes the station of Nzérékoré

The climate at the Upper Guinea is similar to Sahelian
climate, with greater temperature ranges and a longer dry
season (December-May), and annual rainfall ranging
between 1.200 mm in the north to 1.600 mm in the south.
In contrast, the coastal and southern (or forest) regions of
Guinea has a monsoon climate with a shorter dry season
and are typified by a lengthy rainy season (seven to nine
months) and smaller temperature variations than the
interior (Kante et al., 2020; 2019; Guinea, 2018; USAID,
2018; World Bank, 2016; 2017).

Data Description

For this study, monthly rainfall time series for the
1991-2020 period were used. The dataset was provided by
the Guinean National Meteorological Service and they
were obtained from eight synoptic stations distributed
across Guinea (Figure 1b).

I ®) N

13°0,0

12°0,0°

11°0,0"

LAy

90,0

Legend
B Lower-Guinea
B Middle-Guinea
R Upper-Guinea
(1 Forest-guinea
[ Guinea

-16°0,0° -14°0,0" 13°0,0° -12°0,0° 10,0

-10°0.0°

90,0 0.0

Fig. 1: (a) Map Illustrating the Guinea’s Geographic Location
within Africa. (b) Geographical cities to the East, West,
North and South of the overall regional boundary of
study area. These geographical cities are classified into
four geophysical regions as follows: Lower-Guinea
(Boké, Conakry, Kindia), Middle-Guinea
(Labé,Mamou), Upper-Guinea (Faranah, Kankan) and
Forest-Guinea (Nzérékoré)
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Table 1 shows statistics of rainfall for the studied
synoptic stations. From this table it can be noted that
during the studied period: The mean (maximum) rainfall
is weakest for Kankan (Nzérékoré) and highest for
Conakry (Conakry). The standard deviatsion is weakest
for Nzérékoré and highest for Conakry. The skewness is
positive for all stations, however, the highest skewness is
observed for Faranah, while the lowest is for Nzérékoré.
These findings indicate that Nzérékoré experiences a
more symmetrical rainfall distribution with moderate and
consistent patterns, whereas Faranah exhibits an
asymmetric distribution with a tendency toward more
extreme rainfall variations. The kurtosis values for Boké,
Conakry, Faranah and Kankan are greater than 3,
indicating that their distributions are leptokurtic.
However, stations at Mamou, Kindia, Labé, Nzérékoré
have kurtosis values less than 3, meaning, their
distributions are platykurtic. The smallest kurtosis value
is observed for Kindia, while the largest is Faranah.
Overall, mean rainfall values arranging from 121 to 311
mm exemplify the substantial diversity in rainfall levels
over Guinea.

Methods

Ensemble Empirical Mode Decomposition (EEMD)
Algorithm

For a given observed series y(z), the EEMD steps are
as follows (Wu, 2009):

Step 1: Generate a new rainfall dataset x;(t):

x @) =y@®) +n(t),i=1,2,..,m )

Where 7n;(t) is a Gaussian white noise (zero-mean
unit-variance white Gaussian noise) and m (usually set at
1,000) is the number of realizations of Gaussian white
noise:

Step 2: Use EMD algorithm (Huang et al., 1998) to
completely decompose each x; (t):

x;(t) = Y=g IMFy () + 7:(8) 2

Table 1: Descriptive Statistics of the Study Synoptic Stations

Study Climatological statistics (1991-2020)
stations Mean Max Std Skew  Kurt
(mm) (mm) (mm) (mm) (mm)
Boké 192.24 1168.00 234.28 1.08 3.66
Conakry 310.82 1677.00 422.04 1.40 3.90
Kindia 168.87 636.30 175.82  0.74 2.41
Labé 131.55 635.00 143.82  0.88 2.88
Mamou 147.70  729.30 153.54 0.86 2.98
Faranah 136.97 152830 167.27 3.03 22.03
Kankan 12092  612.500 13494 1.10 3.63
Nzérékoré 158.26 539.60 116.84 0.50 2.62
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Where IMF;(t) and r;(t) denote the i” Intrinsic
Mode Function (IMF) component and residue from
x;(t) the EMD technique. Where # indicates the number
of IMF:

Step 3: Finally, take the ensemble average of IMFs
components and residue obtained from
x;(t) with EMD technique:

TMFy = 31, IMFy(6) and R(E) = 3775 (£) 3)

Where IMF,(t) and R(t) are respectively the k”

mode and residue (nonlinear trend) of y(z). Thus, the
observed series is formulated as:

y(©) = k=1 IMFy (£) + R(2) 4)
Complete Ensemble Empirical Mode Decomposition

(CEEMD) Algorithm

According to Li et al. (2023); Ali et al. (2020); Torres
et al. (2011), for a given observed rainfall sets y(t), the
computation steps of CEEMD are:

Step 1: Deduce the first decomposed component
applying EMD to (y(f) + white noise)

Step 2: Rehearse the decomposition and append white
noise of different realizations

Step 3: Calculate the ensemble mean to establish the first

IMF;:
IMF,(t) = %Zlivzl E [y@®) + ow;] (@)
Where o is a ratio coefficient, N is the realizations’
number, w;(t) denotes the different white noise, and E;

represents generating i IMF component:

Step 4: Compute the prime residue:

() = y(t) — IMFy(t) (6)
Step 5: Compute the second IMF component IMF>:
IMF,(t) = =T, E; (11 () + 0By [wi(6)]) @)

Step 6: Replicate the aforementioned steps to get the
(n+1)" IMF component, IMF,+(1):

®)
(€))

IMF; and R(t) are respectively the i mode and
residue (nonlinear trend) of y(?).

IMFr1(8) = 5 20 By (1 () + 0B [wi ()])

y(t) = XL, IMF; (t) + R(t)
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Complete EEMD With Adaptive Noise (CEEMDAN)
Algorithm

According to (Torres et al., 2011; Colominas ef al.,
2012; Antico et al., 2014) for a given observed rainfall
sets y(t), the computation steps of CEEMDAN are:

Step 1: Produce a new rainfall set x;(t):

x(t) = y (&) + Bomi(£) (10)

Where 7;(t) is the white Gaussian noise realization (i
=1, 2, ..., m) with the unit-variance and zero-mean; f3,
(By > 0) represents the noise level:

Step 2: Decompose entirely x;(t) m times through the
EMD technique to get the first intrinsic mode
function IMF;; (t) (i=1, 2, ..., m) and determine
the first IMF of CEEMDAN and the initial
residual R, (t) as follows:

IMF; :% =1 IMF; () (11)
Ri(t) = y(t) — IMF,(t) (12)
Step 3:  Generate a new rainfall set R;; (¢):

Ri1(t) = R (t) + BLE1 (M (1)) (13)

Where the operator E,(-) denotes the k% IMF
decomposed by EMD:

Step 4: Decompose R;;(t) 1 times through the EMD
technique to get the second IMF (IMF,) of
CEEMDAN and the initial residual R,(t) as

follows:
IMF, = % L E1 Ry () + BLE1(m: (1)) (14)
Rz(t) = R1(t) - Wz(t) (15)

Step 5: Replicate Step 3 and 4, therefore, the k-th (k = 2,
3, ..., n) IMF and residual are summarized as:

—— 1

ME; ™ 21 E1(Re—1(8) + Br—1Ex—1(m:(2)))

~

(16)
(17

Where S is the level of added white noise. The value
of B, vary usually between 0.1 and 0.3 (Colominas et al.
2012):

Ri(t) = Ry_1(t) — IMF (t)

Step 6: Eventually, move to Step 5 for the next £ up to
the obtained residual cannot continue the
decomposition by EMD. At that time, the
ultimate residue satisfies the following equation:
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R() = y(t) — ZRIMFy (t) (18)

n is the entire number of modes. Therefore, the
observed series y(t) can be written as:

y(t) = LR IMFy (8) + R(t) (19)

Where IMF, (t) and R (t) represent respectively the
different periodic characteristics and the nonlinear trend.

Improved Complete EEMD WITH Adaptive Noise
(ICEEMDAN) Algorithm

According to Colominas et al. (2014) for a given
observed rainfall sets y(z), the computation steps of
ICEEMDAN are:

Step 1:  Produce a new rainfall set x; (t):
x;(t) = y(t) + BoE1(m:(t)

Where 1;(t) denotes the ith white Gaussian noise added:

(20)

Step 2: Decompose completely x;(t) m times with
EMD technique to get IMF; of the improved

CEEMDAN:
Ry() = — 37 M(x, (D)) @1
IMF; (t) = y(t) — Ry(t) (22)

Step 3: Determine IMF, and residual of the improved

CEEMDAN as follows:
Wz(t) = Ry(t) — Ry(t) (23)
Ry(6) = — T2y M(Ry () + BrE2(ni(£))) (24)

Step 4: Determine IMF of the improved CEEMDAN:

IMF(t) = Re—1(t) — Ri () (25)

Rie(t) =~ 7y M(Ri_1(8) + Bioa B (n:(6))) (26)

Step 5: Eventually, move to Step 4 for the next &, up to
the turn off criterion is attained

Thus, y(#) can be expressed as:

y(©) = ZZIMF, () + R() @7
R(?) is the real nonlinear trend.
In this study, m = 1000, and By = 0.2 in order to
compare EEMD, CEEMD, ICEEMDAN and CEEMDAN
results.

Variational Mode Decomposition (VMD)

According to Dragomiretskiy and Zosso (2014) for a
given observed rainfall sets y(f), the computation steps of
VMD are:
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Step 1: Constructing a variational problem as follows:
: 2
. K J —iwt
I L
Yi=1 i () = y(t)

Where: j = vV—1; § is Dirac distribution; * denotes
convolution operator; y(t) denotes sum of the
components of input series; K is the number of IMFs;
{ur®} := {uy, uy, -+, u,} the set of all modes ;
{wr(®)} :={w;, Wy, -+, wy,} is the of central frequencies;
d, denotes partial derivative:

Step 2:  Solving the variational problem as follows:

Ll {2 = a Zhy |0 [(5(0) +

i . 2

L) up @] e + Iy - ZEw [, + 40,y -

XK we () (29)
Where a is the quadratic penalty factor; £ is a

Lagrangian augmentation term, and A(t) is the Lagrange
multiplier. 4 ; w;, and u; (w) are iteratively updated as:

y(@) -2 () +22
ulrclﬂ(a’) = W (30)
Iy, olue(w)?de
n+1 _ Jo
Y T Pl w)tde GD
(W) = 1M (@) +n(y(@) = Tz, up ™ (w) (32)

Where 7 denotes the iteration counter.

The stopping or convergence criterion for the
iterations of these steps is defined as:
Teflur*?

2
[l

2
—uil|

2<e (33)

Where ¢ represents the convergence threshold or
tolerance.

Variance Contribution Rate and Periodic Cycles

According to Guo et al. (2016); Bai et al. (2017);
Agbazo et al. (2021), the Variance contribution rate
(VCR) is determined as:

2
OIMF),

VCRIMFk =100 * (34)

n 2 2
Yk=101mMFyFOTrend

2
OTrend

VCRpreng = 100 x (35)

Zz=1 GIZMFk_"'a'TZ'rend
Where the operator 0'(2_) denotes variance sign, IMF

and Trend represent respectively the intrinsic mode
function and the nonlinear trend.
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Furthermore, according to Wu and Huang (2004;
2005) the mean period (T) of the k" IMF is estimated
through:

(36)

Where L represents the size of IMF time series and
where NP, represents the number of local maxima in IMF
set.

Performance Evaluation Criteria of Decomposition
Techniques

We have used four statistical metrics:

(a) Root Mean Square Error (RMSE) (Gentilucci et al.,
2019)

(b) Mean Absolute Error (MAE) (Wang and Lu, 2018)

(¢) Mean Square Error (MSE) (Luo et al., 2022)

(d) Statistic of Kolmogorov-Smirnov (DKS) (Wilks,

2006) to identify the best rainfall decomposition
techniques between VMD, EEMD, CEEMD,
CEEMDAN and ICEEMDAN for each region.
Rainfall data reconstruction was performed by
summing IMF components and the overall trend
component obtained by each technique. RMSE,
MAE and MSE indicate the magnitude of errors
between reconstructed and observed rainfall.
RMSE, MAE, MSE values are 0, for the best
reconstruction accuracy technique

The mathematical expressions of RMSE, MSE and
MAE are (Gentilucci et al., 2019; Wang and Lu, 2018; Luo
etal., 2022):

1
RMSE = (% §V=1(Prec(i) - Pobs(i))z) /2 (37)
MAE = %Z?l:ﬁprec(i) — Pops (i) (38)
MSE = %Zﬁ\;l(Prec(i) - Pobs(i))z (39)

P,ec and P,;,¢ are reconstructed and observed rainfall
set, respectively; N is the length.

According to Wilks (2006),
expression of DKS is:

the mathematical

DKS = supy|Fa(x) — Fp(x)] (40)

Where F,(x) and F,(x) represent respectively
cumulative distribution functions of dataset A and B;
sup, stands for supremum.
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Results and Discussion

Figure 2 displays the boxplot of the error made during
the decomposition of the series observed by the
ICEEMDAN, CEEMDAN, CEEMD, EEMD and VMD
techniques. It can be noted that, except for EEMD and
VMD techniques, the minimum, median, 25th and 75th
percentiles and the maximum values of the error are close
to zero in all the studied stations. Thus, among the studied
techniques, the reconstructed rainfall data obtained from
EEMD and VMD techniques present a huge error
compared to the observed rainfall data in all the studied
stations. However, the error with VMD is larger than
EEMD ones, and the error with EEMD technique is
smallest for Nzérékoré and largest for Conakry. Among
the studied techniques, VMD is not suitable.

These findings demonstrate that compared to EEMD
and VMD, CEEMD, CEEMDAN and ICEEMDAN
techniques are systematically more adapted than EEMD
and VMD for monthly rainfall decomposition in Guinea.

Figures 3, 4 and 5 present the performances of the
decomposition techniques. It is evident from these figures
that among all the studied techniques, VMD and EEMD
have the largest RMSE, MAE and MSE values at all the
studied stations, indicating that EEMD and VMD
techniques, especially VMD is not suitable for
decomposing monthly rainfall into a limited number of
oscillating components, confirming the above results.
Furthermore, according to the comparison between the
ICEEMDAN, CEEMDAN and CEEMD techniques, it is
noted that the CEEMD technique consistently
demonstrated higher RMSE, MAE and MSE across all
stations, which means that CEEMD is less suitable. On
comparing the RMSE, MSE, and MAE values of
ICEEMDAN and CEEMDAN techniques, it is observed
that the two techniques are relatively close to one another.
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Fig. 2: Box plot of the difference between the observed Rainfall
data and the reconstructed rainfall data for ICEEMDAN,

CEEMDAN, CEEMD, EEMD and VMD techniques
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Therefore, based on the RMSE, MSE and MAE
criteria, it seems that these two techniques exhibit
comparable effectiveness for decomposing monthly
rainfall and at this step, it is arduous to distinguish the
most appropriate technique between them for the studied
stations.

The computed values of the Kolmogorov-Smirnov
statistic (DKS) for each technique are presented in Figure
6. ICEEMDAN and CEEMDAN techniques have lower
DKS values than the CEEMD and EEMD, suggesting and
confirming that ICEEMDAN and CEEMDAN perform
better than the other two techniques. However, they
exhibited varying degrees of effectiveness across the
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studied stations. ICEEMDAN quasi-systematically shows
lower DKS value compared to CEEMDAN in all the
studied stations, except for Faranah and Nzérékoré.
Therefore, ICEEMDAN is the suitable technique for
decomposing monthly rainfall into a limited number of
oscillating components in most of the studied stations, while
CEEMDAN decomposing performance is significantly
better than ICEEMDAN for Faranah and Nzérékoré.
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Figure 7 presents the Variance Contribution Rate
(VCR), which evaluates the contribution of each IMF to
the monthly rainfall variability. The results show that
ICEEMDAN decomposes the monthly rainfall time series
into six (6) IMF components (IMF1-6) and one trend
component at most studied stations for 1991 to 2020,
except for Kindia and Labé, where the series is
decomposed into five IMF components (IMF1-5) and one
trend component. This finding indicates that the variability
in monthly rainfall time series is less complex for Kindia and
Labé compared to the remaining stations. The underlying
reasons for this difference were not investigated.

The variance rate indicates that, at most of the studied
stations, except, for Kindia, Labé and Nzérékoré, IMF6
emerged as the dominant component, contributing 60 to
80% of the overall variability in monthly rainfall time
series depending on the stations. IMF6 was followed by
IMF1, with a contribution rate of 8 to 15% depending on
the stations. However, for Kindia, Labé and Nzérékoré,
the overall trend component contributes the most for
about 40% to 80%, indicating a nonlinear change in the
monthly rainfall from 1991-2020. It is followed by IMF1
and IMFS5 which contributes for 10% to 20 and 5 to 10%
respectively. This result implies that at these stations, the
overall trend component represents a significant portion
of the monthly rainfall time series variability, suggesting
that these stations may be more impacted by climate
change effects.

Figure 8 illustrates the periodic cycles of the monthly
rainfall components. The results indicate that inter-month
scales, inter-annual scales, inter-decadal scales, and
multi-decadal scales characterized changes in monthly
rainfall during the 1991-2020 period, at all of the studied
stations. By combining these findings with those related
to the contribution of the IMF components (Figure 7), it
can be deduced that, except, for Kindia, Labé and
Nzérékoré, inter-decadal, the inter-monthly and inter-
annual fluctuations are the primary drivers of monthly
rainfall time series variability depending on the station.
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Fig. 7: Variance Contribution Rate (VCR) of IMFs and Trend
Component Extracted Using ICEEMDAN Technique
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Figure 9 presents the long-term trends extracted. The
ICEEMDAN results clearly show that the overall trend in
the monthly rainfall time series during the 1991-2020
period for all of the studied stations is nonlinear. Thus, the
use of standard trend identification techniques, such as the
conventional linear regression technique, that assume a
linear fit to the overall trend of rainfall monthly time
series could lead to inaccurate interpretations in all of the
studied stations.
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The nonlinear trends revealed by ICEEMDAN
technique have a parabolic shape with a downward
concavity, with maximum values observed around 2010.
For all of the stations, the nonlinear trend in the monthly
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rainfall time series during the 1991-2020 period exhibits
an increasing-decreasing pattern. This trend morphology
consists of two distinct phases: The first phase (1991-
2010) is the most humid, characterized by a slightly
increasing trend in monthly rainfall time series.

The second zone (2010-2020) is the driest or less
humid compared to the first ones, marked by a rainfall
deficit and characterized by a decreasing trend.
Qualitatively, these findings align with results reported in
West African countries, such as Burkina-Faso (Yanogo
and Yaméogo, 2023). Overall, the monthly rainfall in
Guinea for 1991-2020 has a nonlinear change, increases
before the late 2010s and decreases after the late 2010s.

Thus, the morphology of the nonlinear trend obtained
using ICEEMDAN at the stations aligns with previous
research conducted in different West African regions.
These studies, identified shift in rainfall trends around
2010s, with a positive trend 1990 and 2010, during the
1982-2013 period (Bodian, 2014; Descroix et al., 2015;
Vischel et al., 2015; Tano et al., 2023; Yanogo and
Yaméogo, 2023). Consequently, trend detection using
ICEEMDAN techniques presents a major advancement
over linear trend detection and is strongly recommended.

Overall, two key reasons confirm the capability of the
ICEEMDAN technique in detecting and analyzing the
nonlinear trend in the studied region: Its ability to explain
past results known in the literature through nonlinear
trend morphology and the coincidence of past results with
those revealed by the nonlinear trend pattern.

The nonlinear trend detected in the monthly rainfall
time series in Guinea aligns with previous studies (Xue et al.,
2013; Duan et al., 2019; Guan et al., 2022), which
identified complex nonlinear changes accompanied by
periodic variability in precipitation data in other parts of
the world.

Conclusion

The performances of five most popular decomposition
techniques in multiscale decomposing of monthly rainfall
datasets across Guinea geographical regions during 1991-
2020 period were presented in this study. The techniques
were tested against four evaluation criteria. [CEEMDAN
and CEEMDAN fulfilled three of the evaluation criteria
(RMSE, MAE, and MSE) in all of the studied stations.
Among the considered techniques, it showed the lowest
RMSE, MAE and MSE, which are close to zero over
ICEEMDAN and CEEMDAN techniques. Thus,
ICEEMDAN and CEEMDAN outperformed other
techniques. However, based on the RMSE, MSE and
MAE criteria, ICEEMDAN and CEEMDAN showed
similar performance for decomposing monthly rainfall in
studied stations. Considering DKS values, ICEEMDAN
outperformed CEEMDAN in most stations. However,
CEEMDAN performs ICEEMDAN in Faranah and
Nzérékoré. So, among the considered stations,
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ICEEMDAN emerged as the most efficient and suggested
for decomposing monthly rainfall time series into a
limited number of oscillating components without the
need for predetermined basis functions in most of the
studied stations, while CEEMDAN is recommended for
Faranah and Nzérékoré ones. Between 1991 and 2020, the
monthly rainfall time series exhibited significant long-
term nonlinear trends at nearly all stations studied,
highlighting that linear trend techniques can lead to wrong
conclusions about the impact of climate change. The
nonlinear trends in monthly rainfall are characterized by
increasing-decreasing trends, reflecting notable climatic
shifts around the 2010s.

These findings highlight our understanding of monthly
rainfall trends, crucial for designing and implementing
effective climate change resilience strategies in Guinea.
These main results also have important implications for
improving monthly rainfall forecasting with machine
learning approaches in Guinea, which will be our future
research topic.
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