Production of Bioelectricity Using Single Chamber Microbial Fuel Cell
- 1 Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
Abstract
The present study addressed the application of sandwich-type air cathode microbial fuel cell (ACMFC) for the production of bioelectricity. Activated carbon was pasted on aluminum mesh for the manufacture of anode and cathode. This electrode design eliminated the requirement for carbon cloth or a metal catalyst, resulting in a cathode with excellent activity for oxygen reduction. The findings demonstrated that open circuit voltage (OCV) initially rose with duration due to microbial growth rate. Furthermore, decreases in voltage are seen, probably as a result of a decrease in sufficient feed for the number of microbes. When fed with glucose (substrate), OCV suddenly increased when the bacteria re-grow and then maintains a consistent amount. The current was recorded employing a multimeter, the same as the OCV. The produced current was found to have increased significantly. These results demonstrate that activated carbon is an economical substance for obtaining advantageous oxygen reduction rates in ACMFC.
DOI: https://doi.org/10.3844/ajessp.2023.54.59
Copyright: © 2023 Ahmad Nawaz and Ram Sharan Singh. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 1,985 Views
- 1,402 Downloads
- 0 Citations
Download
Keywords
- Microbial Fuel Cells
- Electrode Materials
- Activated Carbon
- OCV
- Aluminum Mesh